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THE CONNECTED SUBGRAPH OF

THE TORSION GRAPH OF A MODULE

Shaban Ghalandarzadeh, Parastoo Malakooti Rad, and Sara Shirinkam

Abstract. In this paper, we will investigate the concept of the torsion-
graph of an R-module M , in which the set T (M)∗ makes up the vertices
of the corresponding torsion graph, Γ(M), with any two distinct vertices

forming an edge if [x : M ][y : M ]M = 0. We prove that, if Γ(M) contains
a cycle, then gr(Γ(M)) ≤ 4 and Γ(M) has a connected induced subgraph
Γ̄(M) with vertex set {m ∈ T (M)∗ | Ann(m)M ̸= 0} and diam(Γ̄(M)) ≤
3. Moreover, if M is a multiplication R-module, then Γ̄(M) is a maximal
connected subgraph of Γ(M). Also Γ̄(M) and Γ̄(S−1M) are isomorphic
graphs, where S = R \ Z(M). Furthermore, we show that, if Γ̄(M) is
uniquely complemented, then S−1M is a von Neumann regular module

or Γ̄(M) is a star graph.

1. Introduction

In [11], Beck introduced and investigated the zero-divisor graph of a com-
mutative ring. He let all elements of the ring be vertices of the graph. In [8],
Anderson and Livingston introduced and studied a zero-divisor graph, whose
vertices are non-zero zero-divisors while, x−y is an edge whenever xy = 0.
Since then, the concept of zero-divisor graphs has been studied extensively by
many authors; see [2, 6, 7, 10]. The concept of a zero-divisor graph has been ex-
tended to non-commutative rings by Redmond [21]. This concept also has been
introduced and studied for semigroups by DeMeyer, McKenzie and Schneider
in [13], and for near-rings by Cannon et al, in [12]. For recent developments on
graphs of commutative rings see [3, 4, 5, 17].

Let R be a commutative ring with identity element and M be a unitary R-
module. In this research, we will investigate the concept of the torsion-graph
of an R-module M , which has been defined in [16]. The torsion graph Γ(M)
of M is a simple graph, whose vertices are the non-zero torsion elements of M ,
and two distinct elements x, y are adjacent if and only if [x : M ][y : M ]M = 0.
The residual of Rx by M , is denoted by [x : M ], is the set of elements r ∈ R
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such that rM ⊆ Rx for x ∈ M . The annihilator of an R-module M , denoted
by AnnR(M), is [0 : M ].

An R-module M is called a multiplication module if for every submodule K
of M there exists an ideal I of R such that K = IM (Barnard [10]). A proper
submodule N of M is called a prime submodule of M , whenever rm ∈ N
(where r ∈ R and m ∈ M) implies that m ∈ N or r ∈ [N : M ].

An R-module M is called a cancellation module if IM = JM for any ideals
I and J of R implies that I = J . Also, an R-module M is a weak-cancellation
module if IM = JM for any ideals I and J of R implies that I + Ann(M) =
J +Ann(M). Finitely generated multiplication modules are weak cancellation,
Theorem 3 [1].

Let T (M) be the set of elements of M such that Ann(m) ̸= 0. It is clear
that if R is an integral domain, then T (M) is a submodule of M , which is
called the torsion submodule of M . If T (M) = 0, then the module M is said
to be torsion-free, and it is called the torsion module if T (M) = M . Thus
Γ(M) is an empty graph if and only if M is a torsion-free R-module. We
use the symbol Γ̄(M) to show the induced subgraph Γ(M) with vertex set
{m ∈ T (M)∗ | Ann(m)M ̸= 0}. In this paper, we will also investigate the
interplay of module properties of M in relation to the properties of Γ̄(M). We
believe that this study helps to illuminate the structure of T (M). For example,
if M is a multiplication R-module, we show that M is finite if and only if Γ̄(M)
is finite. Recall that a graph is finite if both its vertices set and edges set are
finite. We know that a graph G is connected if there is a path between any
two distinct vertices. The distance d(x, y) between connected vertices x, y is
the length of the shortest path from x to y (d(x, y) = ∞ if there is no such
path). The diameter of G is the diameter of a connected graph, which is the
supremum of the distances between vertices. The diameter is 0 if the graph
consists of a single vertex. The girth of G, denoted by gr(G), is defined as the
length of the shortest cycle in G (gr(G) = ∞ if G contains no cycles).

A ring R is called reduced if Nil(R) = 0. An R-moduleM is called a reduced
module if rm = 0 for r ∈ R and m ∈ M , implies that rM ∩ Rm = 0. Also a
ring R is von Neumann regular if for each a ∈ R there exists an element b ∈ R
such that a = a2b. It is clear that every von Neumann regular ring is reduced.
Recall that a ring R is called Bézout if every finitely generated ideal I of R is
principal. We know that every von Neumann regular ring is Bézout.

A submodule N of M is called a pure submodule of M if IM ∩ N = IN
for every ideal I of R (Ribenboim in [22]). In [18], Kash (p. 105) states that
an R-module M is called a von Neumann regular module if and only if every
cyclic submodule of M is a direct summand in M . If N is a direct summand
in M , then N is pure but not conversely (see [20], Example 2, p. 54 and [22],
Example 14, p. 100). Therefore every von Neumann regular module is reduced.

A complete graph is a simple graph whose vertices are pairwise adjacent,
and the complete graph with n vertices is denoted by Kn. A bipartite graph is
one whose vertex set can be partitioned into two subsets so that no edge has
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both ends in the same subset. A complete bipartite graph is one in which each
vertex is joined to every vertex that is not in the same subset; the complete
bipartite graph, with two parts of sizes m and n, is denoted by Km,n. The
complete bipartite graph K1,n is called a star.

Let G be a graph and V (G) denote the vertices of G. Let v ∈ V (G), as in
[7]; w ∈ V (G) is called a complement of v, if v is adjacent to w and no vertex
is adjacent to both v and w. That is, the edge v − w is not an edge of any
triangle in G. In this case, we write v ⊥ w. In module-theoretic terms, for
multiplication R-module M , this is the same as saying v ⊥ w in Γ(M) if and
only if v, w ∈ T ∗(M) and Ann(w)M ∩Ann(v)M ⊂ {0, v, w}. Moreover, we will
follow the authors in [7] and say that G is complemented if every vertex has
a complement, and it is uniquely complemented if it is complemented and any
two complements of the vertices set are adjacent to the same vertices. From
Theorems 3.5 and 3.9 [7], we know that for a ring R with non-zero nilpotent
elements, Γ(R) is uniquely complemented if and only if Γ(R) is a star graph. If
R is reduced and Γ(R) is complemented, then S−1R is a von Neumann regular
ring, where S = R \ Z(R).

In Section 2, we give an example of non-isomorphic modules with the same
torsion graph. We show that Γ̄(M) is always connected with diam(Γ̄(M)) ≤ 3.
Furthermore, we prove that if Γ(M) contains a cycle, then gr(Γ(M) ≤ 4. In this
manner, we study some of the properties of Γ̄(M), when M is a multiplication
R-module. An R-module M is a multiplication module if for every submodule
K of M there exists an ideal I of R such that K = IM . It is clear that if M
is a multiplication R-module, then Γ̄(M) is a maximal connected subgraph of
Γ(M).

In Section 3, we obtain Γ̄(M) ∼= Γ̄(S−1M), where S = R \ Z(M) if M is an
R-module such that Ann(x) = Ann([x : M ]M) for all x ∈ T (M).

In Section 4, we investigate complemented and uniquely complemented tor-
sion graphs. We also extend Theorem 3.9 of [7] to the multiplicationR-modules.
Furthermore, for a multiplication R-module M when R is Bézout or cyclic R-
module and prove that if Γ̄(M) is uniquely complemented, then either Γ̄(M) is
a star graph or S−1M is a von Neumann regular module, where S = R\Z(M).

Throughout the paper, we use the symbol (x, y) or x + y to denote the
elements of M = M1⊕M2 and T (M)∗ = T (M) \ {0}. Also, we use the symbol
(M)R to denote M as an R-module. Let Z(M) := {r ∈ R | rm = 0 for some
0 ̸= m ∈ M}. Nil(R) is an ideal consisting of nilpotent elements of R,

Nil(M) := ∩N∈Spec(M)N.

Spec(M) is a set of the prime submodules of M , and for submodule N of M ,
D(N) := {n ∈ N | [n : M ][n′ : M ]M = 0 for some non-zero n′ ∈ M}. As
usual, the rings of integers and integers modulo n will be denoted by Z and
Zn, respectively.
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2. Properties of Γ̄(M)

In this section, we show that Γ̄(M) is connected and has a small diameter
and girth, and for a multiplication R-module M with |M | ≥ 5, we prove that if
Γ̄(M) is complete, then Nil(M) = V ( ¯Γ(M))∪{0}. We begin with the following
example which shows that non-isomorphic modules may have the same torsion
graphs.

Example 2.1. Let M = M1⊕M2 be an R-module, where M1 is a torsion-free
module. So T (M)∗ = {(0,m2) | m2 ∈ T (M2)

∗} and [(0,m2) : M ] = 0. Hence
Γ(M) is a complete graph. Let M = Z⊕ Zn be a Z-module, so Γ(M) = Kn−1

for n ≥ 2.

(Z ⊕ Z4)Z (Z2 ⊕ Z2)Z(Z ⊕ Z2)Z (Z2)Z

Figure 1

We know that Γ(M) may be infinite (that is, the R-module M has infinitely
torsion elements). An interesting case occurs when Γ(M) is finite, because in
the finite case a drawing of the graph is possible. The next theorem shows that
for a multiplication R- module M , Γ̄(M) is finite (except when Γ̄(M) is empty)
if and only if M is finite.

Theorem 2.2. Let M be a multiplication R-module. Then Γ̄(M) is finite if
and only if either M is finite or V (Γ̄(M)) = ∅.

Proof. Suppose that Γ̄(M) is finite and nonempty. Then there exists x ∈
V (Γ̄(M)); let N = Rx and 0 ̸= sm ∈ Rx, where s ∈ [x : M ] and m ∈ M , so
0 ̸= Ann(x)M ⊆ Ann(n)M for all n ∈ N . Hence N ⊆ V (Γ̄(M)). Therefore
N is finite. Now if M is infinite, then there is an element n ∈ N such that
H = {m ∈ M | sm = n} is infinite. For all distinct elements m1,m2 ∈ H,
sm ∈ Ann(m1 −m2)M . So m1 −m2 ∈ V (Γ̄(M)) is a contradiction. Thus M
is finite. □
Corollary 2.3. Let M be a multiplication R-module. Then Γ(M) is finite if
and only if either M is finite or M is a torsion-free R-module.

Proof. If Γ(M) is finite, then Γ̄(M) is finite. Therefore by Theorem 2.2 either
M is finite or V (Γ̄(M)) = 0. Thus for all x ∈ M , Ann(x)M = 0; hence
Ann(x) = Ann(M) for all x ∈ M . Now if M is faithful, then M is torsion-free;
otherwise T (M) = M . Consequently, either M is finite or M is a torsion-free
R-module. □
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The following example shows that the multiplication condition is not super-
fluous.

Example 2.4. Let R = Z and M = Z⊕ Zn. Clearly M is faithful and is not
finite, but by Example 2.1, Γ̄(M) = Kn−1 is finite.

Now we show that for all R-module M , Γ̄(M) is connected with diameter
≤ 3.

Theorem 2.5. Let M be an R-module. Then

Γ̄(M) is connected with diam(Γ̄(M)) ≤ 3.

Moreover, if Γ̄(M) contains a cycle, then gr(Γ̄(M)) ≤ 7.

Proof. Let x, y ∈ V (Γ̄(M)) be two distinct elements. If [x : M ]M or [y :
M ]M or [x : M ][y : M ]M is zero, then d(x, y) = 1. Therefore we suppose
that [x : M ]M , [y : M ]M , and [x : M ][y : M ]M is non-zero, so there are
non-zero elements α ∈ [x : M ][y : M ] and m ∈ M such that αm ̸= 0. If
[x : M ]2 = [y : M ]2 = 0, then αm ∈ V (Γ̄(M)), and hence x−αm−y is
a path of length 2. Hence suppose that [x : M ]2 = 0 and [y : M ]2 ̸= 0;
since y ∈ V (Γ̄(M)), there exist non-zero elements s ∈ Ann(y) and m0 ∈ M
such that sm0 ̸= 0. Now we consider the case [x : M ]Ann(y)M = 0. In
this case sm0 ∈ V (Γ̄(M)), so x−sm0−y is a path of length 2. In the other
case, if [x : M ]Ann(y)M ≠ 0, then m1 := α1tm ∈ V (Γ̄(M)) for some non-
zero elements α1 ∈ [x : M ], t ∈ Ann(y),m ∈ M , and x−m1−y is a path of
length 2. A similar argument holds if [x : M ]2 ̸= 0, [y : M ]2 = 0. Thus we
may assume that [x : M ]2, [y : M ]2 and [x : M ][y : M ] are all non-zero. If
Ann(x) ̸⊆ Ann(y) and Ann(y) ̸⊆ Ann(x), then there exist non-zero elements
r, s ∈ R such that rx = 0, ry ̸= 0 and sx ̸= 0, sy = 0, hence ry, sx ∈ V (Γ̄(M)).
Now if ry ̸= sx, then x−ry−sx−y is a path of length 3. In the other case, if
ry = sx, then x−ry−y is a path of length 2. Therefore d(x, y) ≤ 3. Thus we
may assume that Ann(x) ⊆ Ann(y) or Ann(y) ⊆ Ann(x). If Ann(x) ⊆ Ann(y),
then rm ∈ V (Γ̄(M)) for some r ∈ Ann(x), m ∈ M and x−rm−y is a path of
length 2. A similar argument holds if Ann(y) ⊆ Ann(x). Hence d(x, y) ≤ 3;
thus diam( ¯Γ(M)) ≤ 3. If Γ̄(M) contains a cycle, by Proposition 1.3 [14], then
gr(Γ̄(M)) ≤ 7. □

As an immediate consequence, we obtain the following result.

Corollary 2.6. Let M be a faithful R-module. Then Γ(M) is connected with
diam(Γ(M)) ≤ 3.

The following example shows that the faithful condition is not superfluous.

Example 2.7. Let R = Z and M = Z2 ⊕ Z3; then Γ(M) is not connected.

Proposition 1.3 [14] and Corollary 2.6 show that gr(Γ(M)) ≤ 7, when Γ(M)
contains a cycle. We next improve this sentence to gr(Γ(M)) ≤ 4.
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Γ(M)

Figure 2

Theorem 2.8. Let M be a multiplication R-module. If Γ(M) contains a cycle,
then gr(Γ(M) ≤ 4.

Proof. Let m0−m1−m2−· · ·−mn−m0 be the shortest cycle of Γ(M) for n ≥ 4.
If [m1 : M ][mn−1 : M ]M = 0, then Γ(M) contains a cycle m1−m2− · · ·−mn−1

−m1, which is a contradiction. So there exist non-zero elements α ∈ [m1 : M ],
β ∈ [mn−1 : M ], and m ∈ M such that αβm ∈ V (Γ(M)). If αβm ̸= m0 and
αβm ̸= mn, then Γ(M) contains a cycle m0−αβm−mn−m0 is a contradiction.
Therefore αβm = m0 or αβm = mn. So without loss of generality, assume
αβm = m0; thus [m0 : M ]m0 = 0. Now we show that Rm0 = {0,m0} ⊂
Rm1. If there exists a non-zero element x ∈ Rm0 such that x ̸= m0 and
x ̸= m1, then m0−m1−x−m0 is a cycle of length 3, which is a contradiction.
Hence Rm0 = {0,m0} ⊂ Rm1. Therefore there exists y ∈ Rm1 such that
y ̸= 0 and y ̸= m1. By a routine argument we obtain y ̸= m0 and y ̸= m2;
therefore m0−m1−m2−y −m0 is a cycle of length 4, which is a contradiction.
Consequently, gr(Γ(M) ≤ 4. □
Theorem 2.9. Let M be a multiplication R-module. If Γ̄(M) is complete, then
either |M | = 4 or Nil(M) = V (Γ̄(M)) ∪ {0}.
Proof. First suppose that [x : M ]2M ̸= 0 for some x ∈ V (Γ̄(M)), so x ̸∈
Ann(x)M . In this case, we show that |M | = 4. Put N := Ann(x)M . We
divide the proof of the theorem into 6 claims, which are of some interest in
their own right.

Claim 1 : N is a prime submodule of M . Since x ̸∈ Ann(x)M , N is a proper
submodule of M . Let rm ∈ N and m ̸∈ N ; here r and m denote elements of
R and M , respectively. Accordingly, r[m : M ][x : M ]M = 0, so rkx = 0 for
all k ∈ [m : M ] and r ∈ Ann(kx). But there exists k0 ∈ [m : M ] such that
k0x ∈ V (Γ̄(M)); consequently, Ann(k0x)M ⊆ Ann(x)M . Thus rM ⊆ N and
r ∈ [N : M ]. Therefore N is a prime submodule, and as a consequence [N : M ]
will be a prime ideal.

Claim 2 : [x : M ]M = [x : M ]2M . If [x : M ]M ̸= [x : M ]2M , then
x ̸∈ [x : M ]2M , so x ̸= αx for all α ∈ [x : M ]. Since αx = 0 or αx ∈ V (Γ̄(M)),
we have αx adjacent to x. Therefore α2 ∈ [N : M ]. We know that N is a prime
submodule, so α ∈ [N : M ] for all α ∈ [x : M ]. Thus [x : M ]M ⊆ N , which is
a contradiction with x ̸∈ Ann(x)M . Therefore [x : M ]M = [x : M ]2M .

Claim 3 : M = Rx ⊕ M2. Since [x : M ]M = [x : M ]2M , we have Rx =
[x : M ]x. We know that Rx is a weak-cancellation R-module, and so R =
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[x : M ] + Ann(x). A simple check yields M = Rx ⊕ Ann(x)M . Hence we
may assume that M = Rx ⊕ M2 with x adjacent to every other vertex and
M2 = Ann(x)M .

Claim 4 : Rx = {0, x}. Let x ̸= c ∈ Rx. Then c ∈ V (Γ̄(M)) and [c : M ][x :
M ]M = 0; hence [c : M ]x = 0, so c ∈ Rx ∩M2 = {0}.

Claim 5 : D(M2) = 0. Let D(M2) ̸= 0. Then there exists a non-zero element
m2 ∈ M2 such that [m2 : M ][m′

2 : M ]M = 0 for some 0 ̸= m′
2 ∈ M2. Thus

x+m′
2 is a vertex of Γ̄(M), which is adjacent to x. Therefore [x : M ](x+m′

2) =
0, so

[x : M ]x = [x : M ]m′
2.

Thus [x : M ]x ⊆ Rx ∩M2 = {0}. Hence x ∈ Ann(x)M , which is a contradic-
tion; consequently, D(M2) = 0.

Claim 6 : M2 = {0, y}. Since D(M2) = 0, we have [y : M ]y ̸= 0. On the
other hand, 0 ̸= x ∈ Ann(y)M , so y ∈ V (Γ̄(M)). From the above argument we
have [y : M ]2M = [y : M ]M . Therefore

Ry ⊆ [y : M ]y ⊆ (Ann(x) ∩ [y : M2])y ⊆ [y : M2]y.

Hence Ry = [y : M2]y and y = sy for some s ∈ [y : M2]. Let m2 ∈ M2, so

[y : M ][(1− s)m2 : M ]M = 0.

Thus y = 0 or m2 = sm2 ∈ Ry. Hence M2 = Ry. Let m2 ∈ M2 and m2 ̸= y,
so m2 ∈ V (Γ̄(M)) and [m2 : M ][y : M ]M = 0. Therefore m2 = 0 and Ry has
exactly two elements. Consequently, |M | = 4.

Next, we may assume that [x : M ]2M = 0 for all x ∈ V (Γ̄(M)). So x ∈
Nil(M) and V (Γ̄(M)) ⊆ Nil(M). Now let 0 ̸= x ∈ Nil(M). We can write
x =

∑n
i=1 αimi, where αi ∈ [x : M ],mi ∈ M such that αimi ̸= 0 for 1 ≤ i ≤ n.

On the other hand, α2
imi = 0, so 0 ̸= αimi ∈ Ann(αimi)M . Therefore αimi ∈

V (Γ̄(M)). One can easily check that V (Γ̄(M)) is a submodule of M ; hence
x ⊆ V (Γ̄(M)). Consequently, Nil(M) = V (Γ̄(M)) ∪ {0}. □

Example 2.10. Let R = Z and M = Zp2 , where p > 2 is a prime number. It
is clear that Γ̄(M) = Kp−1 is a complete graph. So by Theorem 2.9, Nil(M) =
(p̄).

3. Isomorphisms

Recall that two graphs G and H are isomorphic, denoted by G ∼= H, when-
ever there exists a bijection, say φ from V (G) to V (H), of vertices such that
the vertices x and y are adjacent in G if and only if φ(x) and φ(y) are adjacent
in H.

Let S = R \ Z(M). It is clear that the well-defined map

χ : M −→ S−1M,

defined by

χ(m) =
ms

s
,
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is a monomorphism. So we can identify M with its image in S−1M . Thus if
m denotes an element of M , then the same symbol is also used to denote the
fraction m

1 . In this manner, M become a submodule of S−1M .

Let M be an R-module. For m,m′ ∈ V (Γ̄(M)), we define m ∼M m′ if
and only if Ann(m) = Ann(m′). Clearly ∼M is an equivalence relation on
V (Γ̄(M)). Let S = R \ Z(M). For m ∈ M , denote the equivalence classes of
∼M and ∼MS

containing m, m
1 by [m]M and [m1 ]MS

, respectively, so

[m]M = {m′ ∈ V (Γ̄(M)) | m ∼M m′},
and let

[
m

1
]MS

=

{
m′

t′
∈ V (Γ̄(MS)) |

m′

t′
∼MS

m

1

}
.

Next, we prove that Γ̄(S−1M) and Γ̄(M) are isomorphic by showing that
there is a bijection map between equivalence classes of vertex sets Γ̄(S−1M) and
Γ̄(M) such that the corresponding equivalence classes have the same cardinality.

Theorem 3.1. Let M be an R-module such that Ann(x) = Ann([x : M ]M) for
all x ∈ T (M) and S = R \ Z(M). Then Γ̄(M) and Γ̄(S−1M) are isomorphic.

Proof. (Our proof is quite similar to the proof in [7] applied for a ring) Let
S = R \ Z(M), MS = S−1M , RS = S−1R. A simple check yields that for all
N ≤ M , we have S−1AnnR(N) = AnnS−1R(S

−1N). Hence

V (Γ̄(MS)) =
{m

s
| m ∈ V (Γ̄(M)), s ∈ S

}
,

and ([m]M )S = ([m1 ])MS . On the other hand,

V (Γ̄(M)) =
∪
λ∈Λ

[mλ]M , so V (Γ̄(MS)) =
∪
λ∈Λ

[
mλ

1
]MS

(both are disjoint unions). Next we show that |[x]M | = |[x1 ]MS
| for all x ∈

V (Γ̄(M)). It is clear that [x]M ⊆ [x1 ]MS
. For the reverse inclusion, assume

m
s ∈ [x1 ]MS

. We can suppose that m ∈ [x]M , s ∈ S, so Ann(m) = Ann(x).
Therefore {snm | n ≥ 1} ⊆ [x]M . If |[x]M | is finite, then there exists i ∈ I such
that sim = si+1m. So

m

s
=

msi

si+1
=

msi+1

si+1
= m ∈ [x]M ;

therefore |[x]M | = |[x1 ]MS
|. Now suppose that |[x]M | is infinite. We define an

equivalence relation ≈ on S by s ≈ t if and only if sx = tx. It is easily verified
that the map

[x]M × S/ ≈−→ [
x

1
]MS

(b, [s]) −→ b

s
,

is well-defined, because if (b, [s]) = (a, [t]), then a = b and [s] = [t]. Hence

(s− t)M ⊆ Ann(x)M = Ann(a)M = Ann(b)M ;
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by the hypothesis sa = ta and sb = tb, therefore a
t = b

s . Also, it is clear that
this map is surjective. Thus

|[x
1
]| ≤ |[x]M ||S/ ≈ |.

The map

S/ ≈−→ [x]M

[s] −→ sa.

Clearly, it is well-defined and injective. Hence |S/ ≈ | ≤ |[x]M |, and

|[x
1
]MS

| ≤ |[x]M |2 = |[x]M |,

since |[x]M | is infinite, |[x]M | = |[x1 ]MS |. Thus there is a bijection map

φα : [xα] −→ [
xα

1
]

for each α ∈ Λ. Therefore we define

φ : V (Γ̄(M)) −→ V (Γ̄(MS))

by φ(m) = φα(m), if m ∈ [xα]M . Clearly, φ is a bijection map. Thus we
need only to show that m and n are adjacent in Γ(M) if and only if φ(m)
and φ(n) are adjacent in Γ(MS); that is, [m : M ][n : M ]M = 0 if and only
if [φ(m) : MS ][φ(n) : MS ]MS = 0. Let m ∈ [x]M , n ∈ [y]M , w ∈ [x1 ]MS

, and
z ∈ [y1 ]MS . It is sufficient to show that [m : M ][n : M ]M = 0 if and only if
[w : MS ][z : MS ]MS = 0. If m is adjacent to n, then

[m : M ][n : M ]M = 0
=⇒ [m : M ] ⊆ AnnR(n) = AnnR(y)
=⇒ [m : M ]S ⊆ AnnRS (

y
1 ) = AnnRS (z)

=⇒ [z : MS ] ⊆ AnnRS
(([m : M ]M)S)

=⇒ [z : MS ] ⊆ Ann(m1 ) = Ann(x1 ) = Ann(w)
=⇒ [z : MS ][w : MS ]MS = 0.

Conversely, if z is adjacent to w, then

[z : MS ][w : MS ]MS = 0
=⇒ [z : MS ] ⊆ AnnRS

([w : MS ]MS) ⊆ AnnRS
(w)

=⇒ [z : MS ] ⊆ AnnRS
(w) = AnnRS

(x1 ) = AnnRS
(m1 )

=⇒ [z : MS ][
x
1 : MS ]MS = 0,

implies that

[
m

1
: MS ] ⊆ AnnRS ([z : MS ]MS) ⊆ AnnRS (z) = AnnRS (

y

1
) = AnnRS (

n

1
)

=⇒[
n

1
: MS ][

m

1
: MS ]MS = 0

=⇒[m : M ][n : M ]M = 0,

hence Γ̄(M) and Γ̄(MS) are isomorphic graphs. □
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Theorem 3.2. Let M be a multiplication R-module and S = R \Z(M). Then
Γ(M) and Γ(S−1M) are isomorphic.

Proof. It is similar to the proof of Theorem 3.1. □
Corollary 3.3. Let M and N be multiplication R-modules with S−1M ∼=
S−1N . Then Γ(M) ∼= Γ(N). In particular, Γ(M) ∼= Γ(N) when S−1M =
S−1N .

4. Complemented graph Γ̄(M) and multiplication module

In this section we prove that, if M is a reduced multiplication R-module and
Γ̄(M) is uniquely complemented, S−1M is von Neumann regular. Furthermore,
we show that if M is a multiplication R-module with Nil(M) ̸= 0, then Γ(M)
is uniquely complemented if and only if Γ̄(M) is a star graph such that Γ̄(M)
has at most six edges or is an infinite star graph. Finally, we show that if M is
a multiplication R-module, and Γ̄(M) is uniquely complemented, then either
Γ̄(M) is a star graph or S−1M is von Neumann regular, where S = R \Z(M).

Let G be a (undirected) graph. We will follow the authors in [6] and define
that a ≤ b if a and b are not adjacent and each vertex of G adjacent to
b is also adjacent to a; we define a ∼ b if and only if a ≤ b and b ≤ a.
Thus a ∼ b if and only if a and b are adjacent to exactly the same vertices.
Clearly ∼ is an equivalence relation on G. Let M be a multiplication R-
module and m,n ∈ T (M)∗; then m ∼ n if and only if Ann(m)M \ {m} =
Ann(n)M \ {n}. We also know that if m⊥n, then [m : M ][n : M ]M = 0 and
Ann(m)M ∩Ann(n)M ⊆ {0,m, n}. Now if Ann(m)M ∩Ann(n)M = {0,m, n},
then [m : M ]2M = [n : M ]2M = [m : M ][n : M ]M = 0 and so m + n is
adjacent to m and n, since m ⊥ n, m+n ∈ {0,m, n}, which is a contradiction.
Therefore m ⊥ n if and only if Ann(m)M ∩ Ann(n)M ⊂ {0,m, n} and [m :
M ][n : M ]M = 0.

Proposition 4.1. Let M be a multiplication R-module. Then M is von Neu-
mann regular if and only if every cyclic submodule of M is pure in M .

Proof. Let every cyclic submodule of M be pure in M . Hence Rm = [m : M ]m
for all m ∈ M and so m = αm for some α ∈ [m : M ]. Therefore, M =
Ann(m)M + Rm so that 1 ∈ Ann(m) + [m : M ]. On the other hand, if x ∈
Ann(m)M ∩ Rm, then x = sm = rm0 for some r ∈ Ann(m) and s ∈ R. Thus
αx = sαm = rαm0 = 0, so x = 0. This implies that M = Ann(m)M ⊕ Rm.
Thus M is von Neumann regular. The converse is obvious. □
Lemma 4.2. Consider the following statements for a multiplication R-module
M with m,m′ ∈ T (M)∗.

(a) m ∼ m′,
(b) Rm = Rm′,
(c) Ann(m)M = Ann(m′)M .

Then under the above conditions, we have:
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(1) If M is reduced, then statements (a) and (c) are equivalent.
(2) If M is von Neumann regular, then all three statements are equivalent.

Proof. (1) Let M be reduced; one can easily check that (a)⇐⇒(c).
(2) (a)⇐⇒(c); since every von Neumann regular module is reduced.
(b)=⇒(c); this implication is clear.
(c)=⇒(b); Since M is von Neumann regular, Rm∩[m : M ]M = [m : M ]Rm.

So m = sm for some s ∈ [m : M ], hence; (1− s)m′ ∈ Ann(m)M = Ann(m′)M .
Therefore [m′ : M ]m′ ∈ Rm. Moreover, since M is a von Neumann regular
multiplication, module [m′ : M ]m′ = Rm′. So Rm′ ⊆ Rm and, similarly,
Rm ⊆ Rm′; consequently, Rm = Rm′. □

Lemma 4.3. Let M be a reduced multiplication R-module with m,m′,m′′ ∈
V (Γ̄(M)). If m ⊥ m′ and m ⊥ m′′, then m′ ∼ m′′. Thus Γ̄(M) is uniquely
complemented if and only if Γ̄(M) is complemented.

Proof. Let m,m′,m′′ ∈ Γ̄(M). Suppose m ⊥ m′ and m ⊥ m′′. It is sufficient to
show that Ann(m′)M = Ann(m′′)M . Suppose x ∈ Ann(m′)M , so [x : M ][m′ :
M ]M = 0. One can easily show that for all α ∈ [x : M ],

[αm′′ : M ][m′ : M ]M = 0 = [αm′′ : M ][m : M ]M.

So αm′′ ∈ {0,m,m′}. If αm′′ = m or αm′′ = m′, then m = 0 or m′ = 0 is a
contradiction. Thus αm′′ = 0 for all α ∈ [x : M ], and therefore x ∈ Ann(m′′)M
and Ann(m′)M ⊆ Ann(m′′)M . Similarly, Ann(m′′)M ⊆ Ann(m′)M . □

As an immediate consequence, we obtain the following result.

Corollary 4.4. Let M be a reduced multiplication R-module with m,m′,m′′ ∈
T (M)∗. If m ⊥ m′ and m ⊥ m′′, then m′ ∼ m′′. Thus Γ(M) is uniquely
complemented if and only if Γ(M) is complemented.

Theorem 4.5. Let R be a Bézout ring and M be a reduced multiplication R-
module. If Γ̄(M) is complemented, then S−1M is von Neumann regular, where
S = R \ Z(M).

Proof. Let 0 ̸= x
s ∈ S−1M , where x ∈ M and s ∈ S. Let x ̸∈ V (Γ̄(M))

and x =
∑n

i=1 αimi ∈ [x : M ]M , where αi ∈ [x : M ] and mi ∈ M . Since
R is a Bézout ring

∑n
i=1 Rαi = Rα for some α ∈ R. So x = αm for some

α ∈ M . If α ∈ Z(M), then αm0 = 0 for some non-zero element m ∈ M .
So [m0 : M ][x : M ]M = 0; hence 0 ̸= m0 ⊆ Ann(x)M = 0, which is a
contradiction. Therefore α ∈ S = R \ Z(M). Thus one can easily check that

S−1R(
x

s
) ∩ S−1M(

r

t
) = S−1R(

r

t

x

s
).

Therefore by Proposition 4.1, S−1M is von Neumann regular.
Next we assume that x ∈ V (Γ̄(M)). By the hypothesis there is y ∈ V (Γ̄(M))
such that x ⊥ y. Hence y ∈ Ann(x)M and so y =

∑m
i=1 βimi, mi ∈ M and

βi ∈ Ann(x). Let Rβ =
∑m

i=1 Rβi for some β ∈ R, so y = βm′ for some
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m′ ∈ M . We show that α + β ∈ S. If α + β ∈ Z(M), then (α + β)m1 = 0 for
some non-zero m1 ∈ M . So [αm1 : M ][x : M ]M = 0 = [y : M ][αm1 : M ]M .
Since M is a reduced module x ̸= αm1 and y ̸= αm1. Thus αm1 = 0, and
hence βm1 = 0. So

[x : M ][m1 : M ]M = 0 = [y : M ][m1 : M ]M.

By a similar argument we have m1 = 0, a contradiction. Therefore α + β ∈ S
and x

s = α
α+β

x
s . A simple check yields that

S−1R(
x

s
) ∩ S−1M(

r

t
) = S−1R(

r

t

x

s
).

Hence by Proposition 4.1, S−1M is von Neumann regular. □

Lemma 4.6. Let R be a von Neumann regular ring. Then every multiplication
R- module is reduced.

Proof. Lemma 2.5 of [19]. □

As an immediate consequence, we obtain the following result.

Corollary 4.7. Let R be a von Neumann regular ring and M be a multiplica-
tion R-module. If Γ̄(M) is complemented, then S−1M is von Neumann regular,
where S = R \ Z(M).

Corollary 4.8. Let M be a reduced cyclic R-module. If Γ̄(M) is complemented,
then S−1M is von Neumann regular, where S = R \ Z(M).

Proof. It is similar to the proof of Theorem 4.5. □

Example 4.9. Let R = Z and M = Z2 ⊕ Z3. Clearly M is reduced, and
by Example 2.7, Γ̄(M) is complemented. So by Corollary 4.8, S−1M is von
Neumann regular.

Lemma 4.10. Let R = Z and M = Zpq where p and q are distinct prime
numbers. Then Γ̄(M) is complete bipartite.

Proof. Let x ∈ V (Γ̄(M)), so either x = tp or x = sq for some s, q ∈ R.
Therefore Γ̄(M) may be partitioned into two disjoint vertex sets A and B,
where A = {tp | t ∈ R, tp < n} and B = {sq| s ∈ R sq < n}, and so Γ̄(M) is a
complete bipartite graph. □

Corollary 4.11. Let M be a cyclic reduced R-module. The following state-
ments are equivalent:

(1) S−1M is von Neumann regular, where S = R \ Z(M).
(2) Γ̄(M) is uniquely complemented.
(3) Γ̄(M) is complemented.
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Proof. (1) =⇒ (2). Let M be a von Neumann regular R-module and m ∈
V (Γ̄(M)). So [m : M ]M ∩Rm = Rm[m : M ]. Since Rm is a weak-cancellation
module, R = [m : M ] + Ann(m). Say M := Rx for some x ∈ M . Thus Rx =
Rm+Ann(m)x and therefore x = rm+ y for some r ∈ R, y ∈ Ann(m)x. One
can easily check that y ∈ V (Γ̄(M)) and y ⊥ m, so Γ̄(M) is complemented. Since
M is a cyclic R-module, then S−1M is a cyclic S−1R-module, and therefore by
the above comments, Γ̄(S−1M) is complemented. Moreover, by Theorem 3.2
Γ̄(M) ∼= Γ̄(S−1M), so Γ̄(M) is complemented. Consequently, Γ̄(M) is uniquely
complemented by Lemma 4.3.

(2) =⇒ (3). This is true for any graph.
(3) =⇒ (1). By Corollary 4.8. □

Corollary 4.12. Let R = Z and M = Zp1p2...pn , where pi, 1 ≤ i ≤ n are
distinct prime numbers. Then Γ̄(M) is uniquely complemented and S−1M is
von Neumann regular.

Proof. Let n = 3 and x ∈ V (Γ̄(M)). So there exist i, j, k ∈ {1, 2, 3} such that
either x = tipi, where ti ∈ Z and pj is not divisible by ti for i ̸= j, or x = sipkpj
where si ∈ Z and pj is not divisible by si for i ̸= j, i ̸= k. A routine argument
shows that x = tipi ⊥ pkpj and x = sipkpj ⊥ pi for distinct i, j, k. Therefore by
a similar argument we can show that Γ̄(M) is complemented, and by Corollary
4.11 Γ̄(M) is uniquely complemented and S−1M is von Neumann regular. □

The next example shows that S−1M is von Neumann regular, while M is
not von Neumann regular in spite of Γ(M) ∼= Γ(S−1M).

Example 4.13. (a) Let M1 be an R1-module and M2 an R2-module; then
M = M1×M2 is an R = R1×R2 module with this multiplication R×M −→ M ,
defined by (r1, r2)(m1,m2) = (r1m1, r2m2).

Now let M = Z × nZ and R = Z × Z. Therefore the graph Γ(M) is a
complete bipartite graph (that is, Γ(M) may be partitioned into two disjoint
vertex sets, V1 = {(m1, 0) | m1 ∈ (Z)∗} and V2 = {(0,m2) | m2 ∈ (nZ)∗},
and two vertices x and y are adjacent if and only if they are in distinct vertex
sets). Therefore Γ(M) is complemented. Also, M is a faithful multiplication
R-module, since M = R(1, n). A simple check yields that M is reduced. Thus
S−1M is von Neumann regular by Corollary 4.8. But M is not von Neumann
regular (use N = R(2, 2n) and I = [N : M ]).

(b) Let R = Z2 × Z and M = R as an R-module. So M is a faithful
multiplication R-module. Clearly, M is reduced and Γ(M) is an infinite star
graph with center (1̄, 0). Thus Γ(M) is complemented; by Corollary 4.8, S−1M
is von Neumann regular, but M is not von Neumann regular.

Lemma 4.14. Let M be a multiplication R-module; if x ∈ Nil(M), then there
exists n ∈ N such that αnx = 0 for all α ∈ [x : M ].

Proof. By the proof of Lemma 3.7 Step (1) of [16]. □
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Proposition 4.15. Let M be a multiplication R-module with Nil(M) ̸= 0.
Then

(a) If Γ̄(M) is complemented, then either |M | ≤ 16 or |M | > 16 and
Nil(M) = {0, x} for some 0 ̸= x ∈ M .

(b) If Γ̄(M) is uniquely complemented with |M | > 16, then any complement
of the non-zero x ∈ Nil(M) is an end.

Proof. (a) We subdivide the proof of (a) into the following steps:
Let Γ̄(M) be complemented and x ∈ Nil(M). Assume that α ∈ [x : M ], by

Lemma 4.14 αnx = 0 for some n ∈ N. Choose n to be as small as possible,
αnx = 0. Then n ≥ 1 and αn−1x ̸= 0.

Step 1: In this step we claim that n ≤ 3. Suppose that n > 3, so αx ∈
V (Γ̄(M)). Since Γ̄(M) is complemented, there is a y ∈ V (Γ̄(M) such that y is
a complement of αx. Then

[αn−1x : M ][y : M ]M = 0 = [αn−1x : M ][αx : M ]M,

so αn−1x = y will be the only possibility. Thus αx ⊥ αn−1x. Similarly,
αix ⊥ αn−1x for each 1 ≤ i ≤ n− 2. Let m = αn−2x+ αn−1x. Then

[m : M ][αn−1x : M ]M = 0 = [m : M ][αn−2x : M ]M,

which is a contradiction, since αn−2x ⊥ αn−1x and αn−2x+αn−1x ̸∈ {0, αn−1x,
αn−2x}. Thus n ≤ 3.

Step 2: Let n = 3, so α3x = 0 but α2x ̸= 0. We show that |M | ≤ 16. Similar
to step 1, αx ⊥ α2x. Also, Ann(x)M ⊆ {0, α2x}, since if z ∈ Ann(x)M , then
[z : M ][x : M ]M = 0; hence z is adjacent to the two elements αx and α2x.
Therefore z = α2x, so Ann(x)M ⊆ {0, α2x}. In this case Rα2x = {0, α2x},
because for all r ∈ R,

[rα2x : M ][αx : M ]M = 0 = [rα2x : M ][α2x : M ]M ;

hence rα2x ∈ {0, αx, α2x}. But if rα2x = αx, then α2x = 0 is a contradiction,
and so Rα2x = {0, α2x}. Also,

Ann(α2x)M ⊆ {0, x, αx, α2x, x+ αx, x+ α2x, αx+ α2x, x+ αx+ α2x},
since if z ∈ Ann(α2x)M , then α2z ∈ Ann(x)M = {0, α2x} and either α2z = 0
or α2z = α2x. Thus either

[αz : M ][αx : M ]M = 0 = [αz : M ][α2x : M ]M

or

[(αz − αx) : M ][αx : M ]M = 0 = [(αz − αx) : M ][α2x : M ]M.

Since αx ⊥ α2x, we have either αz ∈ {0, αx, α2x} or (αz−αx) ∈ {0, αx, α2x}.
Now let α2z = 0, so αz ̸= αx; therefore either αz = 0 or α(z − αx) = 0. So

[z : M ][αx : M ]M = 0 = [z : M ][α2x : M ]M

or

[(z − αx) : M ][αx : M ]M = 0 = [(z − αx) : M ][α2x : M ]M ;
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hence z ∈ {0, αx, α2x, α2x+ αx}. Thus we may assume that α2z = α2x; then
αz−αx ̸= αx. On the other hand, αz−αx ∈ {0, αx, α2x}, so either αz−αx = 0
or (αz − αx) = α2x, and by a similar argument, z ∈ {x, α2x, x+ αx, x+ αx+
α2x}. Consequently,

Ann(α2x)M ⊆ {0, x, αx, α2x, x+ αx, x+ α2x, αx+ α2x, x+ αx+ α2x}.

Since α2[x : M ]M ̸= 0, there are γ ∈ [x : M ] and m ∈ M such that α2γm ̸= 0,
and a simple check yields α2γm = α2x. Let m0 ∈ M , so α2γm0 ∈ Rα2x =
{0, α2x}. If α2γm0 = 0, then m0 ∈ Ann(α2x)M , and if α2γm0 = α2x, then
m0 −m ∈ Ann(α2x). Consequently, |M | ≤ 16.

Step 3: In this step we show that H = Ann(α2x)M is a unique maximal
submodule of M. Clearly, H ̸= M and Rα2x ∼= R

Ann(α2x) . Since Rα2x =

{0, α2x}, Ann(α2x) is a maximal ideal of R. Hence by Theorem 2.5 [15],
Ann(α2x)M is a maximal submodule. Also,

Ann(α2x)M ⊆ Rx ⊆ Nil(M) ⊆ Ann(α2x)M.

Therefore Ann(α2x)M = Nil(M) is a unique maximal submodule of M . Also,
a simple check yields that Rm ̸= M for all m ∈ V (Γ̄(M)). Therefore by
Theorem 2.5 [15] Rm ⊆ H, so V (Γ̄(M)) ⊆ H. So V (Γ̄(M)) = Ann(α2x)M , so
Γ̄(M) is a star graph with center α2x and at most 6 edges.

Step (4): Assume that n = 2; we show that [x : M ]2x = 0. Let [x : M ]2x ̸= 0.
There exist two elements α, β ∈ [x : M ] such that αβx ̸= 0. Also, αβγm ̸= 0
for some m ∈ M and γ ∈ [x : M ]. On the other hand, α2x = β2x = γ2x = 0
and αx ⊥ y for some y ∈ V (Γ̄(M)). A simple check yields that Rαx ⊆
{0, αx, y} and y = αβx. Hence αx ⊥ αβx. So R(αx) = {0, αx, αβx} and
Ann(αx)M = {0, αx, αβx}. Also, αβγm is adjacent to two vertices αx and
αβx, but αβγm ̸= αx. Thus αβγm = αβx. We know that αβm is adjacent to
two vertices, αx and αβx, but αβm ̸= αβγm = αβx, so αβm = αx, which is
a contradiction. Thus [x : M ]2x = 0.

Step (5): Assume that n = 2 and [x : M ]2x = 0. We show that |M | ≤ 12.
By hypothesis, α2x = 0 and αx ̸= 0; hence α[x : M ]M ̸= 0. Thus αβm ̸= 0
for some β ∈ [x : M ] and m ∈ M . We know that Γ(M) is complemented
and 0 ̸= αβm ∈ Ann(x)M , so x ∈ V (Γ̄(M)). So there is y ∈ V (Γ̄(M)) such
that x ⊥ y, but αx is adjacent to two vertices, x and y. Hence either αx = x
or αx = y. If αx = x, then multiplying by α we have αx = 0, which is a
contradiction, so αx = y. Let z ∈ Ann(x)M . Hence z ∈ {0, x, αx}, since
x ⊥ αx = y. If z = x, then [x : M ]x = 0, which is a contradiction. Therefore
Ann(x)M = {0, αx}. Also, a simple check yields that R(αx) = {0, αx}. On
the other hand, αβm ∈ Ann(αm)M , so αm ∈ V (Γ̄(M)), and there exists
w ∈ V (Γ̄(M)) such that αm ⊥ w; but αβm is adjacent to two vertices, αm
and w. Therefore αβm = w will be the only possibility, and so αβm ⊥ αm.
Also, αβm is adjacent to two vertices, αx and x; hence αβm = αx. Now we
show that Ann(αx)M = {0, αm,αx, x, x + αm, x + αx}. Let v ∈ Ann(αx)M ,
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so αv ∈ Ann(x)M = {0, αx}. If αv = 0, then

[v : M ][αβm : M ]M = 0 = [v : M ][αm : M ]M,

and if αv = αx, then

[v − x : M ][αβm : M ]M = 0 = [v − x : M ][αm : M ]M.

Consequently, Ann(αx)M = {0, αm,αx, x, x+αm, x+αx}, and |Ann(αx)M | ≤
6. For all m0 ∈ M , αβm0 ∈ R(αx) = {0, αx}. So either m0 ∈ Ann(αx)M or
m0 − m ∈ Ann(αx)M , since αβm = αx. Therefore |M | ≤ 12. By a similar
argument in Step (3), Ann(αx)M = Nil(M) is a unique maximal submodule
of M , and Γ̄(M) is a star graph with a center αx with at most 4 edges.

Step (6): Assume that n = 1. If [x : M ]x ̸= 0, based on the above steps
we have 6 ≤ |M | ≤ 16. So we may assume that [x : M ]x = 0. We show that
|M | = 9 or Nil(M) = {0, x} with 2x = 0 and |M | ̸= 9. Let x ∈ [x : M ]M so
x = Σn

i=1αimi where αi ∈ [x : M ] and mi ∈ M for all 1 ≤ i ≤ n. Since Γ̄(M)
is complemented, there is y ∈ T (M)∗ such that x ⊥ y, so Rx ⊆ {0, x, y}. If
x ̸= αimi for all i, then αimi ∈ Rx, and so αimi = y for all i. Suppose that
αimi = α1m1; thus x = Σn

i=1α1m1 = (Σn
i=1α1)m1 = βm1 where β = Σn

i=1α1 ∈
[x : M ]. Hence we may assume that x = αm for some α ∈ [x : M ] and m ∈ M
such that α2m = 0, but 0 ̸= αm. We know that x + x ∈ Rx ⊆ {0, x, y}; if
x + x ̸= 0, then Rx = {0, x, 2x}, x ⊥ 2x, and Ann(x)M = {0, x, 2x}. For all
m0 ∈ M , αm0 ∈ Rx; therefore

[m0 : M ][x : M ]M = 0 = [m0 : M ][2x : M ]

or

[m0 −m : M ][x : M ]M = 0 = [m0 −m : M ][2x : M ]

or

[m0 − 2m : M ][x : M ]M = 0 = [m0 − 2m : M ][2x : M ].

Hence |M | = 9, and by a similar argument in Step (3), Ann(x)M is a unique
maximal submodule of M and Γ̄(M) is a star graph. Now let |M | ̸= 9. So by
the above argument, we must have 2x = 0. We claim that Nil(M) = {0, x}.
Suppose that z is another non-zero element of Nil(M); hence [z : M ]z = 0
and z = βm′ for some β ∈ [z : M ] and m′ ∈ M , such that β2m′ = 0.
Also, 0 ̸= x ∈ Ann(x)M and 0 ̸= z ∈ Ann(z)M , so x, z ∈ V (Γ̄(M)). Since
Γ̄(M) is complemented, there are x′, z′ ∈ V (Γ̄(M)) such that x ⊥ x′ and
z ⊥ z′. Therefore Rx ⊆ {0, x, x′} and Rz ⊆ {0, z, z′}. Observe that αβm = 0.
Let 0 ̸= αβm ∈ Rx and αβm ∈ Rz, if αβm = x ∈ Rz. Thus x = z′, so
x ⊥ z, and hence, αβm = 0 is a contradiction. If αβm = x′, then Rx =
{0, x, αβm} = Ann(x)M , and, similar to the above argument, |M | = 9, which
is a contradiction. So αβm = 0. On the other hand, x = βm′ ∈ Ann(x+ z)M ,
so x + z ∈ V (Γ̄(M)). Let w be a complement of x + z; clearly, w is neither x
nor z. It is clear that αw ∈ Rx ⊆ {0, x, x′}, if αw = 0. Then x is adjacent to
two elements, w and x + z, which is a contradiction. If αw = x′, then Rx =
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{0, x, αw} = Ann(x)M , and it implies that |M | = 9, which is a contradiction.
Hence we may assume that αw = x and similarly, βw = z. Then

Rz = [z : M ]w,Rx = [x : M ]w.

Since w ⊥ x+ z,

[w : M ]x = [w : M ]z,

and x, x+ z ∈ Rz. Hence x+ z = z′ = x or x+ z = 0. In both case, we have a
contradiction. Consequently, Nil(M) = {0, x}.

(b) Let 0 ̸= x ∈ Nil(M) and |M | ≥ 17. By the proof (a) we have Nil(M) =
{0, x} for some x ∈ M such that 2x = 0 and [x : M ]x = 0. Hence x ∈ V (Γ̄(M)).
Since Γ̄(M) is complemented, there is y ∈ V (Γ̄(M)) such that x ⊥ y. We claim
that y is an end. We first show that x+ y also is a complement for x. Clearly,
x + y ∈ V (Γ̄(M)) and [x + y : M ][x : M ]M = 0, because [x : M ]x = 0 and
x ⊥ y. If w ∈ V (Γ̄(M)) is adjacent to both x and x+ y, then

[x+ y : M ][w : M ]M = 0 = [x : M ][w : M ]M.

Hence [w : M ]R(x + y) = 0, so [y : M ][w : M ]M = 0. Moreover, x ⊥ y,
thus either w = x or w = y. If w = y, then [y : M ]y = 0. Therefore
y ∈ Nil(M) = {0, x}, which is a contradiction, so x = w. Thus x + y is a
complement for x. Since Γ̄(M) is uniquely complemented, x+ y ∼ y. Assume
that z ∈ V (Γ̄(M)) \ {x} such that z is adjacent to y; hence, z is adjacent to
x + y. So [z : M ][x : M ]M = 0. Thus z = y, since x ⊥ y. Consequently, y is
an end. □

Remark 4.16. The proof of Proposition 4.15(a) shows that if M is a multi-
plication R-module such that Γ̄(M) is complemented and |Nil(M)| > 2, then
|M | ≤ 16. Also, M has a unique maximal submodule and Γ̄(M) is a star graph
with at most six edges. Therefore Γ̄(M) is uniquely complemented. Also, it
shows that if Γ̄(M) is not uniquely complemented, then Nil(M) = {0, x}, in
which x is an element of M such that x[x : M ] = 0. Hence x = βm for some
m ∈ M , and β ∈ [x : M ].

Example 4.17. Let R = Z and M = Z20. Clearly, M is not reduced, so
Nil(M) ̸= 0 and Γ(M) is complemented, but not uniquely complemented. So
by the proof of Proposition 4.15, Nil(M) = {0, 10}.

Clearly, star graphs are uniquely complemented. The next theorem shows
that for a multiplication R-module M with Nil(M) ̸= 0, if Γ̄(M) is uniquely
complemented, then Γ̄(M) is a star graph.

Theorem 4.18. Let R be a Bézout ring and M be a multiplication R-module
with Nil(M) ̸= 0. If Γ̄(M) is a uniquely complemented graph, then either
Γ̄(M) is a star graph with at most six edges or Γ̄(M) is an infinite star graph
with center x, where Nil(M) = {0, x}.
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Figure 3

Proof. Suppose that Γ̄(M) is uniquely complemented and Nil(M) ̸= 0. Let
|M | ≤ 16; then by Remark 4.16, Γ̄(M) is a star graph with at most six edges.
Let |M | > 16. Hence by Step (7) of Proposition 4.15(a), Nil(M) = {0, x} for
some 0 ̸= x ∈ M and [x : M ]x = 0.

We first show that Γ̄(M) is an infinite graph. Let c be a complement of x, so
Ann(c)M = {0, x} = Nil(M), by Proposition 4.15(b). Let c = Σn

i=1(αimi) ∈
[c : M ]M , where αi ∈ [c : M ] and mi ∈ M for 1 ≤ i ≤ n. Since R is a Bézout
ring, Σn

i=1Rαi = Rα for some α ∈ R. We claim that αc is also a complement
of x. If z is adjacent to both vertices x and αc, then

[αc : M ][z : M ]M = 0 = [x : M ][z : M ]M.

Therefore αz ∈ Ann(c)M = {0, x}. So either αz = 0 or αz = x. If αz = 0,
then [z : M ]c = 0; so z ∈ Ann(c)M , which is a contradiction, and αz = x.
Hence α[z : M ]z = x[z : M ] = 0. Therefore z[z : M ] ⊆ Ann(c)M = Nil(M),
and hence z ∈ Nil(M) = {0, x}, which again is a contradiction. Consequently,
αc ⊥ x; so by Proposition 4.15(b), Ann(αc)M = {0, x}. By a similar argument,
αic ⊥ x and Ann(αic)M = {0, x} for 1 ≤ i ≤ n . Hence each αic is an end.
Next, note that αic are all distinct. If not, suppose that αic = αjc for some
1 ≤ i < j. Therefore αi(1 − αj−i)c = 0, so (1 − αj−i) ∈ Ann(αic). Using the
proof of Proposition 4.15(a) Step 6, x = βm for some β ∈ [x : M ] and m ∈ M ,
such that β2m = 0 but βm ̸= 0. Hence (1 − αj−i)m ∈ Ann(αic)M = {0, x}.
So either m− αi−jm = 0 or m− αi−jm = x. If m = αi−jm, then

x = βm = βαi−jm ∈ βαi−j−1Rc ⊆ αi−j−1[x : M ][c : M ]M = 0,

which is a contradiction. Thus m− αi−jm = x. So

x− αi−jβm = βm− αi−jβm = βx = 0.

Hence x ∈ αi−j−1βRc = 0, which again is a contradiction. Consequently, Γ̄(M)
is infinite.

Next, we show that Γ̄(M) is a star graph with center x. By contradiction,
suppose that Γ̄(M) is not a star graph. Let c ∈ V (Γ̄(M)) be a complement
of x, so there is a a ∈ V (Γ̄(M)) \ {x, c} such that [a : M ][x : M ]M = 0,
but a is not an end. Hence there is y ∈ V (Γ̄(M)) \ {a, x, c} such that y ⊥ a.
Let c = Σn

i=1(αimi), where αi ∈ [c : M ] and mi ∈ M , for 1 ≤ i ≤ n, and
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let Rα = Σn
i=1Rαi. We can check that αy ̸∈ {0, a, x, c, y}. If αy = 0, then

[y : M ]c = 0, which is a contradiction with c is an end. If αy = x, then
α[y : M ][c : M ]M = 0, so y ∈ Ann(αc)M = {0, x}, which is a contradiction. If
αy = y, then αy[x : M ] ⊆ [x : M ]Rc = 0, which is a contradiction. If αy = c,
then a is adjacent to c, which is a contradiction. Last, if αy = a, then αy[y :
M ] = 0. So y[y : M ] ∈ Ann(αc)M = Nil(M), and therefore y ∈ Nil(M), which
is a contradiction. Thus αy ∈ V (Γ̄(M)) \ {a, x, c, y}. By the hypothesis, there
is z ∈ V (Γ̄(M)) such that z is a complement of αy. One can also verify that
z ̸∈ {0, αy, a, x, c, y} (Use y ̸∈ Nil(M) to show that z ̸∈ {c, y} and use αy ⊥ z
to show that z ̸∈ {a, x}). Clearly, [x : M ][z : M ]M ̸= 0. Let z = Σs

i=1rimi,
where ri ∈ [z : M ] and mi ∈ M for 1 ≤ i ≤ s, and let Rγ = Σn

i=1Rri. If γx = 0,
then [x : M ][z : M ]M = 0, which is a contradiction. So we must suppose that
γx ̸= 0. Also, [γx : M ][c : M ]M = 0; hence γx ∈ Ann(c)M . Thus γx = x. On
the other hand, αy ⊥ z, so

[γy : M ][c : M ]M = [y : M ]R(Σn
i=1(γαimi)) ⊆ [y : M ]Rαz = 0.

Therefore γy ∈ Ann(c)M . Hence either γy = 0 or γy = x. So x is adjacent to
both y and a, but this is a contradiction with a ⊥ y; consequently, Γ̄(M) is an
infinite star graph with center x. □

Corollary 4.19. Let M be a cyclic R-module with Nil(M) ̸= 0. If Γ̄(M) is a
uniquely complemented graph, then either Γ̄(M) is a star graph with at most six
edges or Γ̄(M) is an infinite star graph with center x, where Nil(M) = {0, x}.

Proof. It is similar to the proof of Theorem 4.18. □

Corollary 4.20. Let R be a Bézout ring and M be a multiplication R module.
If Γ̄(M) is uniquely complemented, then either Γ̄(M) is a star graph or S−1M
is von Neumann regular. Moveover, for a cyclic R-module M , the converse is
true.

Proof. Let Γ̄(M) be uniquely complemented. IfNil(M) = 0, thenM is reduced
and by Theorem 4.5, S−1M is von Neumann regular. If Nil(M) ̸= 0, then by
Theorem 4.18, Γ̄(M) is a star graph. The converse is true by Corollary 4.11. □

Corollary 4.21. Let M be a cyclic R module. Then Γ̄(M) is uniquely com-
plemented if and only if either Γ̄(M) is a star graph or S−1M is von Neumann
regular.

Proof. Let Γ̄(M) be uniquely complemented. If Nil(M) = 0, then M is re-
duced, and by Corollary 4.8, S−1M is von Neumann regular. If Nil(M) ̸= 0,
then by Corollary 4.19, Γ̄(M) is a star graph. The converse is true by Corollary
4.11. □

Example 4.22. Let R = Z, M1 = Z33, and M2 = Z30. Γ(Mi), i = 1, 2, is a
uniquely complemented graph. So by Corollary 4.20, S−1Mi, i = 1, 2, is von
Neumann regular.
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