Browse > Article
http://dx.doi.org/10.4134/JKMS.2012.49.5.1031

THE CONNECTED SUBGRAPH OF THE TORSION GRAPH OF A MODULE  

Ghalandarzadeh, Shaban (Department of Mathematics Faculty of Science K. N. Toosi University of Technology)
Rad, Parastoo Malakooti (Faculty of Electronic and Computer and IT Islamic Azad University)
Shirinkam, Sara (Department of Mathematics Faculty of Science K. N. Toosi University of Technology)
Publication Information
Journal of the Korean Mathematical Society / v.49, no.5, 2012 , pp. 1031-1051 More about this Journal
Abstract
In this paper, we will investigate the concept of the torsion-graph of an R-module M, in which the set $T(M)^*$ makes up the vertices of the corresponding torsion graph, ${\Gamma}(M)$, with any two distinct vertices forming an edge if $[x:M][y:M]M=0$. We prove that, if ${\Gamma}(M)$ contains a cycle, then $gr({\Gamma}(M)){\leq}4$ and ${\Gamma}(M)$ has a connected induced subgraph ${\overline{\Gamma}}(M)$ with vertex set $\{m{\in}T(M)^*{\mid}Ann(m)M{\neq}0\}$ and diam$({\overline{\Gamma}}(M)){\leq}3$. Moreover, if M is a multiplication R-module, then ${\overline{\Gamma}}(M)$ is a maximal connected subgraph of ${\Gamma}(M)$. Also ${\overline{\Gamma}}(M)$ and ${\overline{\Gamma}}(S^{-1}M)$ are isomorphic graphs, where $S=R{\backslash}Z(M)$. Furthermore, we show that, if ${\overline{\Gamma}}(M)$ is uniquely complemented, then $S^{-1}M$ is a von Neumann regular module or ${\overline{\Gamma}}(M)$ is a star graph.
Keywords
torsion graph; multiplication modules; von Neumann regular modules;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Barnard, Multiplication modules, J. Algebra 71 (1981), no. 1, 174-178.   DOI
2 I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226.   DOI
3 G. A. Cannon, K. Neuerburg, and S. P. Redmond, Zero-divisor graphs of nearrings and semigroups, Nearrings and nearfields, 189-200, Springer, Dordrecht, 2005.
4 F. R. DeMeyer, T. McKenzie, and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2002), no. 2, 206-214.   DOI
5 R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
6 Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755-779.   DOI
7 SH. Ghalandarzadeh and P. Malakooti Rad, Torsion graph over multiplication modules, Extracta Math. 24 (2009), no. 3, 281-299.
8 J. Han, The zero-divisor graph under group actions in a noncommutative ring, J. Korean Math. Soc. 45 (2008), no. 6, 1647-1659.   과학기술학회마을   DOI   ScienceOn
9 F. Kash, Modules and Rings, London: Academic Press, 1982.
10 P. Malakooti Rad, Sh. Ghalandarzadeh, and S. Shirinkam, On the torsion graph and von Neumann regular rings, Filomat 26, 47-53. To appear.
11 H. Matsumara, Commutative Ring Theory, Cambridge, UK: Cambridge University Press, 1986.
12 S. P. Redmond, The zero-divisor graph of a non-commutative ring, Internat. J. Commutative Rings 1 (2002), no. 4, 203-211.
13 P. Ribenboim, Algebraic Numbers, Wiley, 1972.
14 D. D. Anderson, Multiplication ideals, multiplication rings and the ring R(X), Canad. J. Math. 28 (1976), no. 4, 260-768.
15 D. D. Anderson and M. Naseer, Beck's coloring of a commutative rings, J. Algebra 159 (1993), no. 2, 500-514.   DOI   ScienceOn
16 D. F. Anderson, M. C. Axtell, and J. A. Stickles, Zero-divisor graphs in commutative rings, Commutative algebra, Noetherian and non-Noetherian perspectives, 23-45, Springer, New York, 2011.
17 D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008), no. 7, 2706-2719.   DOI   ScienceOn
18 D. F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (2003), no. 3, 221-241.   DOI   ScienceOn
19 D. F. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008), no. 8, 3073-3092.   DOI   ScienceOn
20 D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, The zero-divisor graph of a commutative ring. II, Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), 61-72, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.
21 D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447.   DOI   ScienceOn
22 A. Badawi and D. F. Anderson, Divisibility conditions in commutative rings with zero-divisors, Comm. Algebra 38 (2002), no. 8, 4031-4047.