DOI QR코드

DOI QR Code

Cell Death by Polyvinylpyrrolidine-Coated Silver Nanoparticles is Mediated by ROS-Dependent Signaling

  • Kang, Kyeong-Ah (Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University) ;
  • Jung, Hye-Youn (Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University) ;
  • Lim, Jong-Seok (Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University)
  • Received : 2012.05.23
  • Accepted : 2012.06.04
  • Published : 2012.07.31

Abstract

Silver nanoparticles (AgNPs) are widely used nanoparticles and they are mainly used in antibacterial and personal care products. In this study, we evaluated the effect of AgNPs on cell death induction in the murine dendritic cell line DC2.4. DC2.4 cells exposed to AgNPs showed a marked decrease in cell viability and an induction of lactate dehydrogenase (LDH) leakage in a time- and dose-dependent manner. In addition, AgNPs promoted reactive oxygen species (ROS)-dependent apoptosis and AgNP-induced ROS triggered a decrease in mitochondrial membrane potential. The activation of the intracellular signal transduction pathway was also observed in cells cultured with AgNPs. Taken together, our data demonstrate that AgNPs are able to induce a cytotoxic effect in DCs through ROS generation. This study provides important information about the safety of AgNPs that may help in guiding the development of nanotechnology applications.

Keywords

References

  1. Ahamed, M., Posgai, R., Gorey, T. J., Nielsen, M., Hussain, S. M. and Rowe, J. J. (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol. Appl. Pharmacol. 242, 263-269. https://doi.org/10.1016/j.taap.2009.10.016
  2. Asharani, P. V., Lianwu, Y., Gong, Z. and Valiyaveettil, S. (2011) Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafi sh embryos. Nanotoxicology 5, 43-54. https://doi.org/10.3109/17435390.2010.489207
  3. AshaRani, P. V., Low Kah Mun, G., Hande, M. P. and Valiyaveettil, S. (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS. Nano. 3, 279-290. https://doi.org/10.1021/nn800596w
  4. Banchereau, J. and Steinman, R. M. (1998) Dendritic cells and the control of immunity. Nature 392, 245-252. https://doi.org/10.1038/32588
  5. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y. J., Pulendran, B. and Palucka, K. (2000) Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767-811. https://doi.org/10.1146/annurev.immunol.18.1.767
  6. Blanco, P., Palucka, A. K., Pascual, V. and Banchereau, J. (2008) Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev. 19, 41-52. https://doi.org/10.1016/j.cytogfr.2007.10.004
  7. Boucher, W., Stern, J. M., Kotsinyan, V., Kempuraj, D., Papaliodis, D., Cohen, M. S. and Theoharides, T. C. (2008) Intravesical nanocrystalline silver decreases experimental bladder inflammation. J. Urol. 179, 1598-1602. https://doi.org/10.1016/j.juro.2007.11.037
  8. Carlson, C., Hussain, S. M., Schrand, A. M., Braydich-Stolle, L. K., Hess, K. L., Jones, R. L. and Schlager, J. J. (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 112, 13608-13619. https://doi.org/10.1021/jp712087m
  9. Costa, C. S., Ronconi, J. V., Daufenbach, J. F., Gonçalves, C. L., Rezin, G. T., Streck, E. L. and Paula, M. M. (2010) In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol. Cell Biochem. 342, 51-56. https://doi.org/10.1007/s11010-010-0467-9
  10. Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho-Bragado, A., Gao, X., Lara, H. H. and Yacaman, M. J. (2005) Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnology 3, 6. https://doi.org/10.1186/1477-3155-3-6
  11. Eom, H. J. and Choi, J. (2009a) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol. Lett. 187, 77-83. https://doi.org/10.1016/j.toxlet.2009.01.028
  12. Eom, H. J. and Choi, J. (2009b) Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B. Toxicol. In Vitro 23, 1326-1332. https://doi.org/10.1016/j.tiv.2009.07.010
  13. Eom, H. J. and Choi, J. (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ. Sci. Technol. 44, 8337- 8842. https://doi.org/10.1021/es1020668
  14. Hackenberg, S., Scherzed, A., Kessler, M., Hummel, S., Technau, A., Froelich, K., Ginzkey, C., Koehler, C., Hagen, R. and Kleinsasser, N. (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol. Lett. 201, 27-33. https://doi.org/10.1016/j.toxlet.2010.12.001
  15. Heath, W. R., Belz, G. T., Behrens, G. M., Smith, C. M., Forehan, S. P., Parish, I. A., Davey, G. M., Wilson, N. S., Carbone, F. R. and Villadangos, J. A. (2004) Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199, 9-26. https://doi.org/10.1111/j.0105-2896.2004.00142.x
  16. Heng, B. C., Zhao, X., Tan, E. C., Khamis, N., Assodani, A., Xiong, S., Ruedl, C., Ng, K. W. and Loo, J. S. (2011) Evaluation of the cytotoxic and infl ammatory potential of differentially shaped zinc oxide nanoparticles. Arch. Toxicol. 85, 1517-1528. https://doi.org/10.1007/s00204-011-0722-1
  17. Hsin, Y. H., Chen, C. F., Huang, S., Shih, T. S., Lai, P. S. and Chueh, P. J. (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 179, 130-139. https://doi.org/10.1016/j.toxlet.2008.04.015
  18. Kang, K., Lim, D. H., Choi, I. H., Kang, T., Lee, K., Moon, E. Y., Yang, Y., Lee, M. S. and Lim, J. S. (2011) Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles. Toxicol. Lett. 205, 227-234. https://doi.org/10.1016/j.toxlet.2011.05.1033
  19. Kim, S., Choi, J. E., Choi, J., Chung, K. H., Park, K., Yi, J. and Ryu, D. Y. (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro 23, 1076-1084. https://doi.org/10.1016/j.tiv.2009.06.001
  20. Koike, E., Takano, H., Inoue, K., Yanagisawa, R. and Kobayashi, T. (2008) Carbon black nanoparticles promote the maturation and function of mouse bone marrow-derived dendritic cells. Chemosphere 73, 371-376. https://doi.org/10.1016/j.chemosphere.2008.05.054
  21. Lee, Y. S., Kim, D. W., Lee, Y. H., Oh, J. H., Yoon, S., Choi, M. S., Lee, S. K., Kim, J. W., Lee, K. and Song, C. W. (2011) Silver nanoparticles induce apoptosis and G2/M arrest via $ PKC{\zeta}$-dependent signaling in A549 lung cells. Arch. Toxicol. 85, 1529-1540. https://doi.org/10.1007/s00204-011-0714-1
  22. Lim, D. H., Jang, J., Kim, S., Kang, T., Lee, K. and Choi, I. H. (2012) The effects of sub-lethal concentrations of silver nanoparticles on infl ammatory and stress genes in human macrophages using cDNA microarray analysis. Biomaterials 33, 4690-4699. https://doi.org/10.1016/j.biomaterials.2012.03.006
  23. Nallathamby, P. D. and Xu, X. H. (2010) Study of cytotoxic and therapeutic effects of stable and purifi ed silver nanoparticles on tumor cells. Nanoscale 2, 942-952. https://doi.org/10.1039/c0nr00080a
  24. Nishanth, R. P., Jyotsna, R. G., Schlager, J. J., Hussain, S. M. and Reddanna, P. (2011) Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: role of ROS-$NF{\kappa}B$ signaling pathway. Nanotoxicology 5, 502-516. https://doi.org/10.3109/17435390.2010.541604
  25. Park, E. J. and Park, K. (2009) Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett. 184, 18-25. https://doi.org/10.1016/j.toxlet.2008.10.012
  26. Park, E. J., Bae, E., Yi, J., Kim, Y., Choi, K., Lee, S. H., Yoon, J., Lee, B. C. and Park, K. (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Toxicol. Pharmacol. 30, 162-168. https://doi.org/10.1016/j.etap.2010.05.004
  27. Piao, M. J., Kang, K. A., Lee, I. K., Kim, H. S., Kim, S., Choi, J. Y., Choi, J. and Hyun, J. W. (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett. 201, 92-100. https://doi.org/10.1016/j.toxlet.2010.12.010
  28. Shen, Z., Reznikoff, G., Dranoff, G. and Rock, K. L. (1997) Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 158, 2723-2730.
  29. Shukla, R. K., Sharma, V., Pandey, A. K., Singh, S., Sultana, S. and Dhawan, A. (2011) ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol. In Vitro 25, 231-241. https://doi.org/10.1016/j.tiv.2010.11.008
  30. Sriram, M. I., Kanth, S. B., Kalishwaralal, K. and Gurunathan, S. (2010) Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model. Int. J. Nanomedicine 5, 753-762.
  31. Su, H. L., Chou, C. C., Hung, D. J., Lin, S. H., Pao, I. C., Lin, J. H., Huang, F. L., Dong, R. X. and Lin, J. J. (2009) The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30, 5979-5987. https://doi.org/10.1016/j.biomaterials.2009.07.030
  32. Wang, F., Gao, F., Lan, M., Yuan, H., Huang, Y. and Liu, J. (2009) Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol. In Vitro 23, 808-815 https://doi.org/10.1016/j.tiv.2009.04.009
  33. Winter, M., Beer, H. D., Hornung, V., Krämer, U., Schins, R. P. and Förster, I. (2011) Activation of the infl ammasome by amorphous silica and TiO2 nanoparticles in murine dendritic cells. Nanotoxicology 5, 326-340. https://doi.org/10.3109/17435390.2010.506957
  34. Wu, J., Sun, J. and Xue, Y. (2010) Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. Toxicol. Lett. 199, 269-276. https://doi.org/10.1016/j.toxlet.2010.09.009
  35. Yen, H. J., Hsu, S. H. and Tsai, C. L. (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5, 1553-1561. https://doi.org/10.1002/smll.200900126
  36. Zanette, C., Pelin, M., Crosera, M., Adami, G., Bovenzi, M., Larese, F. F. and Florio. C. (2011) Silver nanoparticles exert a long-lasting antiproliferative effect on human keratinocyte HaCaT cell line. Toxicol. In Vitro 25, 1053-1060. https://doi.org/10.1016/j.tiv.2011.04.005
  37. Zhang, L. W., Bäumer, W. and Monteiro-Riviere, N. A. (2011) Cellular uptake mechanisms and toxicity of quantum dots in dendritic cells. Nanomedicine (Lond) 6, 777-791. https://doi.org/10.2217/nnm.11.73

Cited by

  1. Elucidation of biogenic silver nanoparticles susceptibility towards Escherichia coli: an investigation on the antimicrobial mechanism vol.10, pp.5, 2016, https://doi.org/10.1049/iet-nbt.2015.0063
  2. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy vol.10, pp.8, 2016, https://doi.org/10.1080/17435390.2016.1189614
  3. Nanoparticle Induced Oxidative Stress in Cancer Cells: Adding New Pieces to an Incomplete Jigsaw Puzzle vol.15, pp.12, 2014, https://doi.org/10.7314/APJCP.2014.15.12.4739
  4. In VivoEvaluation of Complex Biogenic Silver Nanoparticle and Enoxaparin in Wound Healing vol.2015, 2015, https://doi.org/10.1155/2015/439820
  5. High-Resolution Analytical Electron Microscopy Reveals Cell Culture Media-Induced Changes to the Chemistry of Silver Nanowires vol.47, pp.23, 2013, https://doi.org/10.1021/es403264d
  6. A multifunctional silver nanocomposite for the apoptosis of cancer cells and intracellular imaging vol.53, pp.41, 2017, https://doi.org/10.1039/C7CC02834B
  7. Inhalation of Silver Nanomaterials—Seeing the Risks vol.15, pp.12, 2014, https://doi.org/10.3390/ijms151223936
  8. Oxidative stress-mediated inhibition of intestinal epithelial cell proliferation by silver nanoparticles vol.29, pp.7, 2015, https://doi.org/10.1016/j.tiv.2015.07.017
  9. Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism vol.5, pp.20, 2013, https://doi.org/10.1039/c3nr03205a
  10. Gene Expression, Protein Function and Pathways of Arabidopsis thaliana Responding to Silver Nanoparticles in Comparison to Silver Ions, Cold, Salt, Drought, and Heat vol.5, pp.2, 2015, https://doi.org/10.3390/nano5020436
  11. Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments vol.261, pp.2, 2016, https://doi.org/10.1111/jmi.12215
  12. Fabrication of electrospun poly(ethylene oxide)–poly(capro lactone) composite nanofibers for co-delivery of niclosamide and silver nanoparticles exhibits enhanced anti-cancer effects in vitro vol.4, pp.4, 2016, https://doi.org/10.1039/C5TB02351C
  13. Comparison of cytotoxicity and genotoxicity effects of silver nanoparticles on human cervix and breast cancer cell lines vol.36, pp.9, 2017, https://doi.org/10.1177/0960327116675206
  14. A systematic review of evidence for silver nanoparticle-induced mitochondrial toxicity vol.3, pp.2, 2016, https://doi.org/10.1039/C5EN00187K
  15. Silver nanoparticles and electroporation: Their combinational effect on Leishmania major vol.36, pp.8, 2015, https://doi.org/10.1002/bem.21945
  16. Liposomal encapsulation of silver nanoparticles enhances cytotoxicity and causes induction of reactive oxygen species-independent apoptosis vol.38, pp.5, 2018, https://doi.org/10.1002/jat.3566
  17. Tannic Acid-Modified Silver and Gold Nanoparticles as Novel Stimulators of Dendritic Cells Activation vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.01115
  18. Probing Cellular Processes Using Engineered Nanoparticles vol.29, pp.6, 2012, https://doi.org/10.1021/acs.bioconjchem.8b00026
  19. Toxicity of silver nanoparticles in mouse bone marrow-derived dendritic cells: Implications for phenotype vol.16, pp.1, 2012, https://doi.org/10.1080/1547691x.2019.1584652
  20. An Alternative In Vitro Method for Examining Nanoparticle-Induced Cytotoxicity vol.38, pp.5, 2012, https://doi.org/10.1177/1091581819859267
  21. Nanomaterials and Innate Immunity: A Perspective of the Current Status in Nanosafety vol.33, pp.5, 2012, https://doi.org/10.1021/acs.chemrestox.0c00051
  22. Lifetime bioaccumulation of silver nanoparticles accelerates functional aging by inactivating antioxidant pathways, an effect reversed by pterostilbene vol.8, pp.12, 2012, https://doi.org/10.1039/d1en00655j
  23. Coating of wallpaper with green synthesized silver nanoparticles from Passiflora foetida fruit and its illustrated antifungal mechanism vol.112, pp.None, 2022, https://doi.org/10.1016/j.procbio.2021.11.027