References
- Ahamed, M., Posgai, R., Gorey, T. J., Nielsen, M., Hussain, S. M. and Rowe, J. J. (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol. Appl. Pharmacol. 242, 263-269. https://doi.org/10.1016/j.taap.2009.10.016
- Asharani, P. V., Lianwu, Y., Gong, Z. and Valiyaveettil, S. (2011) Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafi sh embryos. Nanotoxicology 5, 43-54. https://doi.org/10.3109/17435390.2010.489207
- AshaRani, P. V., Low Kah Mun, G., Hande, M. P. and Valiyaveettil, S. (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS. Nano. 3, 279-290. https://doi.org/10.1021/nn800596w
- Banchereau, J. and Steinman, R. M. (1998) Dendritic cells and the control of immunity. Nature 392, 245-252. https://doi.org/10.1038/32588
- Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y. J., Pulendran, B. and Palucka, K. (2000) Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767-811. https://doi.org/10.1146/annurev.immunol.18.1.767
- Blanco, P., Palucka, A. K., Pascual, V. and Banchereau, J. (2008) Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev. 19, 41-52. https://doi.org/10.1016/j.cytogfr.2007.10.004
- Boucher, W., Stern, J. M., Kotsinyan, V., Kempuraj, D., Papaliodis, D., Cohen, M. S. and Theoharides, T. C. (2008) Intravesical nanocrystalline silver decreases experimental bladder inflammation. J. Urol. 179, 1598-1602. https://doi.org/10.1016/j.juro.2007.11.037
- Carlson, C., Hussain, S. M., Schrand, A. M., Braydich-Stolle, L. K., Hess, K. L., Jones, R. L. and Schlager, J. J. (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 112, 13608-13619. https://doi.org/10.1021/jp712087m
- Costa, C. S., Ronconi, J. V., Daufenbach, J. F., Gonçalves, C. L., Rezin, G. T., Streck, E. L. and Paula, M. M. (2010) In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol. Cell Biochem. 342, 51-56. https://doi.org/10.1007/s11010-010-0467-9
- Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho-Bragado, A., Gao, X., Lara, H. H. and Yacaman, M. J. (2005) Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnology 3, 6. https://doi.org/10.1186/1477-3155-3-6
- Eom, H. J. and Choi, J. (2009a) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol. Lett. 187, 77-83. https://doi.org/10.1016/j.toxlet.2009.01.028
- Eom, H. J. and Choi, J. (2009b) Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B. Toxicol. In Vitro 23, 1326-1332. https://doi.org/10.1016/j.tiv.2009.07.010
- Eom, H. J. and Choi, J. (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ. Sci. Technol. 44, 8337- 8842. https://doi.org/10.1021/es1020668
- Hackenberg, S., Scherzed, A., Kessler, M., Hummel, S., Technau, A., Froelich, K., Ginzkey, C., Koehler, C., Hagen, R. and Kleinsasser, N. (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol. Lett. 201, 27-33. https://doi.org/10.1016/j.toxlet.2010.12.001
- Heath, W. R., Belz, G. T., Behrens, G. M., Smith, C. M., Forehan, S. P., Parish, I. A., Davey, G. M., Wilson, N. S., Carbone, F. R. and Villadangos, J. A. (2004) Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199, 9-26. https://doi.org/10.1111/j.0105-2896.2004.00142.x
- Heng, B. C., Zhao, X., Tan, E. C., Khamis, N., Assodani, A., Xiong, S., Ruedl, C., Ng, K. W. and Loo, J. S. (2011) Evaluation of the cytotoxic and infl ammatory potential of differentially shaped zinc oxide nanoparticles. Arch. Toxicol. 85, 1517-1528. https://doi.org/10.1007/s00204-011-0722-1
- Hsin, Y. H., Chen, C. F., Huang, S., Shih, T. S., Lai, P. S. and Chueh, P. J. (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 179, 130-139. https://doi.org/10.1016/j.toxlet.2008.04.015
- Kang, K., Lim, D. H., Choi, I. H., Kang, T., Lee, K., Moon, E. Y., Yang, Y., Lee, M. S. and Lim, J. S. (2011) Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles. Toxicol. Lett. 205, 227-234. https://doi.org/10.1016/j.toxlet.2011.05.1033
- Kim, S., Choi, J. E., Choi, J., Chung, K. H., Park, K., Yi, J. and Ryu, D. Y. (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro 23, 1076-1084. https://doi.org/10.1016/j.tiv.2009.06.001
- Koike, E., Takano, H., Inoue, K., Yanagisawa, R. and Kobayashi, T. (2008) Carbon black nanoparticles promote the maturation and function of mouse bone marrow-derived dendritic cells. Chemosphere 73, 371-376. https://doi.org/10.1016/j.chemosphere.2008.05.054
-
Lee, Y. S., Kim, D. W., Lee, Y. H., Oh, J. H., Yoon, S., Choi, M. S., Lee, S. K., Kim, J. W., Lee, K. and Song, C. W. (2011) Silver nanoparticles induce apoptosis and G2/M arrest via
$ PKC{\zeta}$ -dependent signaling in A549 lung cells. Arch. Toxicol. 85, 1529-1540. https://doi.org/10.1007/s00204-011-0714-1 - Lim, D. H., Jang, J., Kim, S., Kang, T., Lee, K. and Choi, I. H. (2012) The effects of sub-lethal concentrations of silver nanoparticles on infl ammatory and stress genes in human macrophages using cDNA microarray analysis. Biomaterials 33, 4690-4699. https://doi.org/10.1016/j.biomaterials.2012.03.006
- Nallathamby, P. D. and Xu, X. H. (2010) Study of cytotoxic and therapeutic effects of stable and purifi ed silver nanoparticles on tumor cells. Nanoscale 2, 942-952. https://doi.org/10.1039/c0nr00080a
-
Nishanth, R. P., Jyotsna, R. G., Schlager, J. J., Hussain, S. M. and Reddanna, P. (2011) Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: role of ROS-
$NF{\kappa}B$ signaling pathway. Nanotoxicology 5, 502-516. https://doi.org/10.3109/17435390.2010.541604 - Park, E. J. and Park, K. (2009) Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett. 184, 18-25. https://doi.org/10.1016/j.toxlet.2008.10.012
- Park, E. J., Bae, E., Yi, J., Kim, Y., Choi, K., Lee, S. H., Yoon, J., Lee, B. C. and Park, K. (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Toxicol. Pharmacol. 30, 162-168. https://doi.org/10.1016/j.etap.2010.05.004
- Piao, M. J., Kang, K. A., Lee, I. K., Kim, H. S., Kim, S., Choi, J. Y., Choi, J. and Hyun, J. W. (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett. 201, 92-100. https://doi.org/10.1016/j.toxlet.2010.12.010
- Shen, Z., Reznikoff, G., Dranoff, G. and Rock, K. L. (1997) Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 158, 2723-2730.
- Shukla, R. K., Sharma, V., Pandey, A. K., Singh, S., Sultana, S. and Dhawan, A. (2011) ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol. In Vitro 25, 231-241. https://doi.org/10.1016/j.tiv.2010.11.008
- Sriram, M. I., Kanth, S. B., Kalishwaralal, K. and Gurunathan, S. (2010) Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model. Int. J. Nanomedicine 5, 753-762.
- Su, H. L., Chou, C. C., Hung, D. J., Lin, S. H., Pao, I. C., Lin, J. H., Huang, F. L., Dong, R. X. and Lin, J. J. (2009) The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30, 5979-5987. https://doi.org/10.1016/j.biomaterials.2009.07.030
- Wang, F., Gao, F., Lan, M., Yuan, H., Huang, Y. and Liu, J. (2009) Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol. In Vitro 23, 808-815 https://doi.org/10.1016/j.tiv.2009.04.009
- Winter, M., Beer, H. D., Hornung, V., Krämer, U., Schins, R. P. and Förster, I. (2011) Activation of the infl ammasome by amorphous silica and TiO2 nanoparticles in murine dendritic cells. Nanotoxicology 5, 326-340. https://doi.org/10.3109/17435390.2010.506957
- Wu, J., Sun, J. and Xue, Y. (2010) Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. Toxicol. Lett. 199, 269-276. https://doi.org/10.1016/j.toxlet.2010.09.009
- Yen, H. J., Hsu, S. H. and Tsai, C. L. (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5, 1553-1561. https://doi.org/10.1002/smll.200900126
- Zanette, C., Pelin, M., Crosera, M., Adami, G., Bovenzi, M., Larese, F. F. and Florio. C. (2011) Silver nanoparticles exert a long-lasting antiproliferative effect on human keratinocyte HaCaT cell line. Toxicol. In Vitro 25, 1053-1060. https://doi.org/10.1016/j.tiv.2011.04.005
- Zhang, L. W., Bäumer, W. and Monteiro-Riviere, N. A. (2011) Cellular uptake mechanisms and toxicity of quantum dots in dendritic cells. Nanomedicine (Lond) 6, 777-791. https://doi.org/10.2217/nnm.11.73
Cited by
- Elucidation of biogenic silver nanoparticles susceptibility towards Escherichia coli: an investigation on the antimicrobial mechanism vol.10, pp.5, 2016, https://doi.org/10.1049/iet-nbt.2015.0063
- Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy vol.10, pp.8, 2016, https://doi.org/10.1080/17435390.2016.1189614
- Nanoparticle Induced Oxidative Stress in Cancer Cells: Adding New Pieces to an Incomplete Jigsaw Puzzle vol.15, pp.12, 2014, https://doi.org/10.7314/APJCP.2014.15.12.4739
- In VivoEvaluation of Complex Biogenic Silver Nanoparticle and Enoxaparin in Wound Healing vol.2015, 2015, https://doi.org/10.1155/2015/439820
- High-Resolution Analytical Electron Microscopy Reveals Cell Culture Media-Induced Changes to the Chemistry of Silver Nanowires vol.47, pp.23, 2013, https://doi.org/10.1021/es403264d
- A multifunctional silver nanocomposite for the apoptosis of cancer cells and intracellular imaging vol.53, pp.41, 2017, https://doi.org/10.1039/C7CC02834B
- Inhalation of Silver Nanomaterials—Seeing the Risks vol.15, pp.12, 2014, https://doi.org/10.3390/ijms151223936
- Oxidative stress-mediated inhibition of intestinal epithelial cell proliferation by silver nanoparticles vol.29, pp.7, 2015, https://doi.org/10.1016/j.tiv.2015.07.017
- Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism vol.5, pp.20, 2013, https://doi.org/10.1039/c3nr03205a
- Gene Expression, Protein Function and Pathways of Arabidopsis thaliana Responding to Silver Nanoparticles in Comparison to Silver Ions, Cold, Salt, Drought, and Heat vol.5, pp.2, 2015, https://doi.org/10.3390/nano5020436
- Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments vol.261, pp.2, 2016, https://doi.org/10.1111/jmi.12215
- Fabrication of electrospun poly(ethylene oxide)–poly(capro lactone) composite nanofibers for co-delivery of niclosamide and silver nanoparticles exhibits enhanced anti-cancer effects in vitro vol.4, pp.4, 2016, https://doi.org/10.1039/C5TB02351C
- Comparison of cytotoxicity and genotoxicity effects of silver nanoparticles on human cervix and breast cancer cell lines vol.36, pp.9, 2017, https://doi.org/10.1177/0960327116675206
- A systematic review of evidence for silver nanoparticle-induced mitochondrial toxicity vol.3, pp.2, 2016, https://doi.org/10.1039/C5EN00187K
- Silver nanoparticles and electroporation: Their combinational effect on Leishmania major vol.36, pp.8, 2015, https://doi.org/10.1002/bem.21945
- Liposomal encapsulation of silver nanoparticles enhances cytotoxicity and causes induction of reactive oxygen species-independent apoptosis vol.38, pp.5, 2018, https://doi.org/10.1002/jat.3566
- Tannic Acid-Modified Silver and Gold Nanoparticles as Novel Stimulators of Dendritic Cells Activation vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.01115
- Probing Cellular Processes Using Engineered Nanoparticles vol.29, pp.6, 2012, https://doi.org/10.1021/acs.bioconjchem.8b00026
- Toxicity of silver nanoparticles in mouse bone marrow-derived dendritic cells: Implications for phenotype vol.16, pp.1, 2012, https://doi.org/10.1080/1547691x.2019.1584652
- An Alternative In Vitro Method for Examining Nanoparticle-Induced Cytotoxicity vol.38, pp.5, 2012, https://doi.org/10.1177/1091581819859267
- Nanomaterials and Innate Immunity: A Perspective of the Current Status in Nanosafety vol.33, pp.5, 2012, https://doi.org/10.1021/acs.chemrestox.0c00051
- Lifetime bioaccumulation of silver nanoparticles accelerates functional aging by inactivating antioxidant pathways, an effect reversed by pterostilbene vol.8, pp.12, 2012, https://doi.org/10.1039/d1en00655j
- Coating of wallpaper with green synthesized silver nanoparticles from Passiflora foetida fruit and its illustrated antifungal mechanism vol.112, pp.None, 2022, https://doi.org/10.1016/j.procbio.2021.11.027