DOI QR코드

DOI QR Code

Src Family Kinase Inhibitor PP2 Induces LC3 Conversion in a Manner That is Uncoupled from Autophagy and Increases Apoptosis in Multidrug-Resistant Cells

  • Kim, Yun-Ki (Division of Life Sciences, College of Life Sciences and Bioengineering, University of Incheon) ;
  • Ahn, Jun-Ho (Division of Life Sciences, College of Life Sciences and Bioengineering, University of Incheon) ;
  • Lee, Mi-Chael (Division of Life Sciences, College of Life Sciences and Bioengineering, University of Incheon)
  • Received : 2012.06.04
  • Accepted : 2012.06.18
  • Published : 2012.07.31

Abstract

Recently, we reported that defective autophagy may contribute to the inhibition of the growth in response to PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), a selective SFK inhibitor, in multidrug-resistant v-Ha-ras-transformed NIH 3T3 cells (Ras-NIH 3T3/Mdr). In this study, we demonstrated that PP2 induces LC3 conversion via a mechanism that is uncoupled from autophagy and increases apoptosis in Ras-NIH 3T3/Mdr cells. PP2 preferentially induced autophagy in Ras-NIH 3T3 cells rather than in Ras-NIH 3T3/Mdr cells as determined by LC3-I to LC3-II conversion and GFP-LC3 fluorescence microscopy. Beclin 1 knockdown experiments showed that, regardless of drug resistance, PP2 induces autophagy via a Beclin 1-dependent mechanism. PP2 induced a conformational change in Beclin 1, resulting in the enhancement of the pro-autophagic activity of Beclin 1, in Ras-NIH 3T3 cells. Further, PI3K inhibition induced by wortmannin caused a significant increase in apoptosis in Ras-NIH 3T3 cells, as demonstrated by flow cytometric analysis of Annexin V staining, implying that autophagy inhibition through PI3K increases apoptosis in response to PP2 in Ras-NIH 3T3 cells. However, despite the fact that wortmannin abrogates PP2-induced GFP-LC3 punctae formation, some LC3 conversion remains in Ras-NIH 3T3/Mdr cells, suggesting that LC3 conversion may occur in an autophagy-independent manner. Taken together, these results suggest that PP2 induces LC3 conversion independent of PI3K, concomitant with the uncoupling of LC3 conversion from autophagy, in multidrug-resistant cells.

Keywords

References

  1. Ahn, J. H., Kim, Y. K. and Lee, M. (2011) Decreased interaction of Raf- 1 with its negative regulator Spry2 as a mechanism for acquired drug resistance. Biomol. Ther. 19, 174-180. https://doi.org/10.4062/biomolther.2011.19.2.174
  2. Ahn, J. H. and Lee, M. (2011) Suppression of autophagy sensitizes multidrug resistant cells towards Src tyrosine kinase specifi c inhibitor PP2. Cancer Lett. 310, 188-197. https://doi.org/10.1016/j.canlet.2011.06.034
  3. Arcaro, A. and Wymann, M. P. (1993) Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem. J. 296, 297- 301. https://doi.org/10.1042/bj2960297
  4. Arsham, A. M. and Neufeld, T. P. (2006) Thinking globally and acting locally with TOR. Curr. Opin. Cell Biol. 18, 589-597. https://doi.org/10.1016/j.ceb.2006.09.005
  5. Backer, J. M. (2008) The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem. J. 410, 1-17. https://doi.org/10.1042/BJ20071427
  6. Blommaart, E. F., Krause, U., Schellens, J. P., Vreeling-Sindelarova, H. and Meijer, A. J. (1997) The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243, 240-246. https://doi.org/10.1111/j.1432-1033.1997.0240a.x
  7. Cao, Y. and Klionsky, D. J. (2007) Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 17, 839-849. https://doi.org/10.1038/cr.2007.78
  8. Chen, S., Rehman, S. K., Zhang, W., Wen, A., Yao, L. and Zhang, J. (2010) Autophagy is a therapeutic target in anticancer drug resistance. Biochim. Biophys. Acta. 1806, 220-229.
  9. Codogno, P. and Meijer, A. J. (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 12 Suppl 2, 1509-1518. https://doi.org/10.1038/sj.cdd.4401751
  10. de Grouw, E. P., Raaijmakers, M. H., Boezeman, J. B., van der Reijden, B. A., van de Locht, L. T., de Witte, T. J., Jansen, J. H. and Raymakers, R. A. (2006) Preferential expression of a high number of ATP binding cassette transporters in both normal and leukemic CD34+CD38- cells. Leukemia 20, 750-754. https://doi.org/10.1038/sj.leu.2404131
  11. Debnath, J., Baehrecke, E. H. and Kroemer, G. (2005) Does autophagy contribute to cell death? Autophagy 1, 66-74. https://doi.org/10.4161/auto.1.2.1738
  12. Eisenberg-Lerner, A., Bialik, S., Simon, H. U. and Kimchi, A. (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 16, 966-975. https://doi.org/10.1038/cdd.2009.33
  13. Hanke, J. H., Gardner, J. P., Dow, R. L., Changelian, P. S., Brissette, W. H., Weringer, E. J., Pollok, B. A. and Connelly, P. A. (1996) Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem. 271, 695-701. https://doi.org/10.1074/jbc.271.2.695
  14. Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J. L. and Mizushima, N. (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181, 497-510. https://doi.org/10.1083/jcb.200712064
  15. Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., Iemura, S., Natsume, T., Takehana, K., Yamada, N., Guan, J. L., Oshiro, N. and Mizushima, N. (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981-1991. https://doi.org/10.1091/mbc.E08-12-1248
  16. Kondo, Y., Kanzawa, T., Sawaya, R. and Kondo, S. (2005) The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer 5, 726-734. https://doi.org/10.1038/nrc1692
  17. Kroemer, G. and Levine, B. (2008) Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9, 1004-1010. https://doi.org/10.1038/nrm2529
  18. Lee, M., Ahn, J. H. and Eum, K. H. (2009) The difference in biological properties between parental and v-Ha-ras transformed NIH3T3 cells. Cancer Res. Treat. 41, 93-99. https://doi.org/10.4143/crt.2009.41.2.93
  19. Levine, B. and Yuan, J. (2005) Autophagy in cell death: an innocent convict? J. Clin. Invest. 115, 2679-2688. https://doi.org/10.1172/JCI26390
  20. Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H. and Levine, B. (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672-676. https://doi.org/10.1038/45257
  21. Maiuri, M. C., Criollo, A., Tasdemir, E., Vicencio, J. M., Tajeddine, N., Hickman, J. A., Geneste, O. and Kroemer, G. (2007a) BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 3, 374-376. https://doi.org/10.4161/auto.4237
  22. Maiuri, M. C., Zalckvar, E., Kimchi, A. and Kroemer, G. (2007b) Selfeating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8, 741-752. https://doi.org/10.1038/nrm2239
  23. Meijer, A. J. and Codogno, P. (2009) Autophagy: regulation and role in disease. Crit. Rev. Clin. Lab. Sci. 46, 210-240. https://doi.org/10.1080/10408360903044068
  24. Oberstein, A., Jeffrey, P. D. and Shi, Y. (2007) Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J. Biol. Chem. 282, 13123-13132. https://doi.org/10.1074/jbc.M700492200
  25. Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., Packer, M., Schneider, M. D. and Levine, B. (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927-939. https://doi.org/10.1016/j.cell.2005.07.002
  26. Reiling, J. H. and Sabatini, D. M. (2006) Stress and mTORture signaling. Oncogene 25, 6373-6383. https://doi.org/10.1038/sj.onc.1209889
  27. Sun, Q., Fan, W. and Zhong, Q. (2009) Regulation of Beclin 1 in autophagy. Autophagy 5, 713-716. https://doi.org/10.4161/auto.5.5.8524
  28. Tanida, I., Minematsu-Ikeguchi, N., Ueno, T. and Kominami, E. (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1, 84-91. https://doi.org/10.4161/auto.1.2.1697
  29. Ullman, E., Fan, Y., Stawowczyk, M., Chen, H. M., Yue, Z. and Zong, W. X. (2008) Autophagy promotes necrosis in apoptosis-defi cient cells in response to ER stress. Cell Death Differ. 15, 422-425. https://doi.org/10.1038/sj.cdd.4402234
  30. Wan, X. and Helmanm L, J. (2007) The biology behind mTOR inhibition in sarcoma. Oncologist 12, 1007-1018. https://doi.org/10.1634/theoncologist.12-8-1007
  31. Wu, C. P., Calcagno, A. M. and Ambudkar, S. V. (2008) Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr. Mol. Pharmacol. 1, 93- 105. https://doi.org/10.2174/1874467210801020093
  32. Wu, Z., Chang, P. C., Yang, J. C., Chu, C. Y., Wang, L. Y., Chen, N. T., Ma, A. H., Desai, S. J., Lo, S. H., Evans, C. P., Lam, K. S. and Kung, H. J. (2010) Autophagy blockade sensitizes prostate cancer cells towards Src family kinase inhibitors. Genes Cancer 1, 40-49. https://doi.org/10.1177/1947601909358324
  33. Yang, Z. and Klionsky, D. J. (2009) An overview of the molecular mechanism of autophagy. Curr. Top. Microbiol. Immunol. 335, 1-32. https://doi.org/10.1007/978-3-642-00302-8_1
  34. Yang, Z. and Klionsky, D. J. (2010) Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12, 814-822. https://doi.org/10.1038/ncb0910-814
  35. Yeatman, T. J. (2004) A renaissance for SRC. Nat. Rev. Cancer 4, 470-480. https://doi.org/10.1038/nrc1366
  36. Yu, L., Strandberg, L. and Lenardo, M. J. (2008) The selectivity of autophagy and its role in cell death and survival. Autophagy 4, 567- 573. https://doi.org/10.4161/auto.5902
  37. Yue, Z., Jin, S., Yang, C., Levine, A. J. and Heintz, N. (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsuffi cient tumor suppressor. Proc. Natl. Acad. Sci. USA 100, 15077-15082. https://doi.org/10.1073/pnas.2436255100

Cited by

  1. Knockout of ATG5 leads to malignant cell transformation and resistance to Src family kinase inhibitor PP2 2017, https://doi.org/10.1002/jcp.25912
  2. From Inducing Autophagy to Programmed Cell Death? The PI3K Functional Domain Study of Protein Latcripin-1 from Lentinula edodes C91-3 vol.20, pp.3, 2014, https://doi.org/10.1007/s10989-014-9399-7
  3. Defective autophagy in multidrug resistant cells may lead to growth inhibition by BH3-mimetic gossypol vol.228, pp.7, 2013, https://doi.org/10.1002/jcp.24305
  4. A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells vol.4, pp.8, 2013, https://doi.org/10.1038/cddis.2013.273
  5. ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation vol.11, pp.8, 2015, https://doi.org/10.1080/15548627.2015.1060386