Browse > Article
http://dx.doi.org/10.4062/biomolther.2012.20.4.393

Src Family Kinase Inhibitor PP2 Induces LC3 Conversion in a Manner That is Uncoupled from Autophagy and Increases Apoptosis in Multidrug-Resistant Cells  

Kim, Yun-Ki (Division of Life Sciences, College of Life Sciences and Bioengineering, University of Incheon)
Ahn, Jun-Ho (Division of Life Sciences, College of Life Sciences and Bioengineering, University of Incheon)
Lee, Mi-Chael (Division of Life Sciences, College of Life Sciences and Bioengineering, University of Incheon)
Publication Information
Biomolecules & Therapeutics / v.20, no.4, 2012 , pp. 393-398 More about this Journal
Abstract
Recently, we reported that defective autophagy may contribute to the inhibition of the growth in response to PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), a selective SFK inhibitor, in multidrug-resistant v-Ha-ras-transformed NIH 3T3 cells (Ras-NIH 3T3/Mdr). In this study, we demonstrated that PP2 induces LC3 conversion via a mechanism that is uncoupled from autophagy and increases apoptosis in Ras-NIH 3T3/Mdr cells. PP2 preferentially induced autophagy in Ras-NIH 3T3 cells rather than in Ras-NIH 3T3/Mdr cells as determined by LC3-I to LC3-II conversion and GFP-LC3 fluorescence microscopy. Beclin 1 knockdown experiments showed that, regardless of drug resistance, PP2 induces autophagy via a Beclin 1-dependent mechanism. PP2 induced a conformational change in Beclin 1, resulting in the enhancement of the pro-autophagic activity of Beclin 1, in Ras-NIH 3T3 cells. Further, PI3K inhibition induced by wortmannin caused a significant increase in apoptosis in Ras-NIH 3T3 cells, as demonstrated by flow cytometric analysis of Annexin V staining, implying that autophagy inhibition through PI3K increases apoptosis in response to PP2 in Ras-NIH 3T3 cells. However, despite the fact that wortmannin abrogates PP2-induced GFP-LC3 punctae formation, some LC3 conversion remains in Ras-NIH 3T3/Mdr cells, suggesting that LC3 conversion may occur in an autophagy-independent manner. Taken together, these results suggest that PP2 induces LC3 conversion independent of PI3K, concomitant with the uncoupling of LC3 conversion from autophagy, in multidrug-resistant cells.
Keywords
Autophagy; Apoptosis; Multidrug resistance; Src tyrosine kinase inhibitor; PP2;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ahn, J. H., Kim, Y. K. and Lee, M. (2011) Decreased interaction of Raf- 1 with its negative regulator Spry2 as a mechanism for acquired drug resistance. Biomol. Ther. 19, 174-180.   DOI
2 Ahn, J. H. and Lee, M. (2011) Suppression of autophagy sensitizes multidrug resistant cells towards Src tyrosine kinase specifi c inhibitor PP2. Cancer Lett. 310, 188-197.   DOI
3 Arcaro, A. and Wymann, M. P. (1993) Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem. J. 296, 297- 301.   DOI
4 Arsham, A. M. and Neufeld, T. P. (2006) Thinking globally and acting locally with TOR. Curr. Opin. Cell Biol. 18, 589-597.   DOI
5 Backer, J. M. (2008) The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem. J. 410, 1-17.   DOI   ScienceOn
6 Blommaart, E. F., Krause, U., Schellens, J. P., Vreeling-Sindelarova, H. and Meijer, A. J. (1997) The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243, 240-246.   DOI
7 Cao, Y. and Klionsky, D. J. (2007) Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 17, 839-849.   DOI
8 Chen, S., Rehman, S. K., Zhang, W., Wen, A., Yao, L. and Zhang, J. (2010) Autophagy is a therapeutic target in anticancer drug resistance. Biochim. Biophys. Acta. 1806, 220-229.
9 Codogno, P. and Meijer, A. J. (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 12 Suppl 2, 1509-1518.   DOI
10 de Grouw, E. P., Raaijmakers, M. H., Boezeman, J. B., van der Reijden, B. A., van de Locht, L. T., de Witte, T. J., Jansen, J. H. and Raymakers, R. A. (2006) Preferential expression of a high number of ATP binding cassette transporters in both normal and leukemic CD34+CD38- cells. Leukemia 20, 750-754.   DOI
11 Debnath, J., Baehrecke, E. H. and Kroemer, G. (2005) Does autophagy contribute to cell death? Autophagy 1, 66-74.   DOI
12 Eisenberg-Lerner, A., Bialik, S., Simon, H. U. and Kimchi, A. (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 16, 966-975.   DOI
13 Hanke, J. H., Gardner, J. P., Dow, R. L., Changelian, P. S., Brissette, W. H., Weringer, E. J., Pollok, B. A. and Connelly, P. A. (1996) Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem. 271, 695-701.   DOI
14 Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J. L. and Mizushima, N. (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181, 497-510.   DOI
15 Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., Iemura, S., Natsume, T., Takehana, K., Yamada, N., Guan, J. L., Oshiro, N. and Mizushima, N. (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981-1991.   DOI
16 Kondo, Y., Kanzawa, T., Sawaya, R. and Kondo, S. (2005) The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer 5, 726-734.   DOI
17 Kroemer, G. and Levine, B. (2008) Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9, 1004-1010.   DOI   ScienceOn
18 Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H. and Levine, B. (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672-676.   DOI   ScienceOn
19 Lee, M., Ahn, J. H. and Eum, K. H. (2009) The difference in biological properties between parental and v-Ha-ras transformed NIH3T3 cells. Cancer Res. Treat. 41, 93-99.   DOI
20 Levine, B. and Yuan, J. (2005) Autophagy in cell death: an innocent convict? J. Clin. Invest. 115, 2679-2688.   DOI
21 Maiuri, M. C., Criollo, A., Tasdemir, E., Vicencio, J. M., Tajeddine, N., Hickman, J. A., Geneste, O. and Kroemer, G. (2007a) BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 3, 374-376.   DOI
22 Maiuri, M. C., Zalckvar, E., Kimchi, A. and Kroemer, G. (2007b) Selfeating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8, 741-752.   DOI   ScienceOn
23 Meijer, A. J. and Codogno, P. (2009) Autophagy: regulation and role in disease. Crit. Rev. Clin. Lab. Sci. 46, 210-240.   DOI
24 Oberstein, A., Jeffrey, P. D. and Shi, Y. (2007) Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J. Biol. Chem. 282, 13123-13132.   DOI
25 Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., Packer, M., Schneider, M. D. and Levine, B. (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927-939.   DOI
26 Reiling, J. H. and Sabatini, D. M. (2006) Stress and mTORture signaling. Oncogene 25, 6373-6383.   DOI
27 Sun, Q., Fan, W. and Zhong, Q. (2009) Regulation of Beclin 1 in autophagy. Autophagy 5, 713-716.   DOI
28 Wan, X. and Helmanm L, J. (2007) The biology behind mTOR inhibition in sarcoma. Oncologist 12, 1007-1018.   DOI
29 Tanida, I., Minematsu-Ikeguchi, N., Ueno, T. and Kominami, E. (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1, 84-91.   DOI
30 Ullman, E., Fan, Y., Stawowczyk, M., Chen, H. M., Yue, Z. and Zong, W. X. (2008) Autophagy promotes necrosis in apoptosis-defi cient cells in response to ER stress. Cell Death Differ. 15, 422-425.   DOI
31 Wu, C. P., Calcagno, A. M. and Ambudkar, S. V. (2008) Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr. Mol. Pharmacol. 1, 93- 105.   DOI
32 Wu, Z., Chang, P. C., Yang, J. C., Chu, C. Y., Wang, L. Y., Chen, N. T., Ma, A. H., Desai, S. J., Lo, S. H., Evans, C. P., Lam, K. S. and Kung, H. J. (2010) Autophagy blockade sensitizes prostate cancer cells towards Src family kinase inhibitors. Genes Cancer 1, 40-49.   DOI
33 Yang, Z. and Klionsky, D. J. (2009) An overview of the molecular mechanism of autophagy. Curr. Top. Microbiol. Immunol. 335, 1-32.   DOI
34 Yang, Z. and Klionsky, D. J. (2010) Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12, 814-822.   DOI
35 Yeatman, T. J. (2004) A renaissance for SRC. Nat. Rev. Cancer 4, 470-480.   DOI
36 Yu, L., Strandberg, L. and Lenardo, M. J. (2008) The selectivity of autophagy and its role in cell death and survival. Autophagy 4, 567- 573.   DOI
37 Yue, Z., Jin, S., Yang, C., Levine, A. J. and Heintz, N. (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsuffi cient tumor suppressor. Proc. Natl. Acad. Sci. USA 100, 15077-15082.   DOI