DOI QR코드

DOI QR Code

Plant Cell Wall Polysaccharides as Potential Resources for the Development of Novel Prebiotics

  • Yoo, Hye-Dong (Chodang Pharmaceutical) ;
  • Kim, Do-Jung (National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Paek, Seung-Ho (Department of Biological Sciences, Konkuk University) ;
  • Oh, Seung-Eun (Department of Biological Sciences, Konkuk University)
  • Received : 2012.02.01
  • Accepted : 2012.04.13
  • Published : 2012.07.31

Abstract

Prebiotic oligosaccharides, with a degree of polymerization (DP) of mostly less than 10, exhibit diverse biological activities that contribute to human health. Currently available prebiotics are mostly derived from disaccharides and simple polysaccharides found in plants. Subtle differences in the structures of oligosaccharides can cause significant differences in their prebiotic properties. Therefore, alternative substances supplying polysaccharides that have more diverse and complex structures are necessary for the development of novel oligosaccharides that have actions not present in existing prebiotics. In this review, we show that structural polysaccharides found in plant cell walls, such as xylans and pectins, are particularly potential resources supplying broadly diverse polysaccharides to produce new prebiotics.

Keywords

References

  1. Aachary, A. A. and Prapulla, S. G. (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: Microbial synthesis, utilization, structural charcterization, bioactive properties, and applications. Compr. Rev. Food Sci. F. 10, 2-16. https://doi.org/10.1111/j.1541-4337.2010.00135.x
  2. Abrams, S. A., Griffi n, I. J., Hawth, K. M. and Ellis, K. J. (2007) Effect of prebiotic supplementation and calcium intake on body mass index. J. Pediatr. 151, 293-298. https://doi.org/10.1016/j.jpeds.2007.03.043
  3. Azumi, N. and Ikemizu, S. (2004) Collagen production promoters containing acidic xylooligosaccharides. Japan Patent JP 2004210664.
  4. Barcelo, A., Claustre, J., Moro, F., Chayvialle, J. A., Cuber, J. C. and Plaisancie, P. (2000) Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 46, 218-224. https://doi.org/10.1136/gut.46.2.218
  5. Bauer, S., Vasu, P., Persson, S., Mort, A. J. and Somerville, C. R. (2006) Development and application of a suite of polysaccharidedegrading enzymes for analyzing cell walls. Proc. Natl. Acad. Sci. USA 103, 11417-11422. https://doi.org/10.1073/pnas.0604632103
  6. Berg, R. D. (1985) Indigenous intestinal microfl ora and the host immune response. EOS J. Immunol. Immunopharmacol. 4, 161-168
  7. Blaut, M. (2002) Relationship of prebiotics and food to intestinal microflora. Eur. J. Nutr. 41 Suppl 1, I11-I16.
  8. Bongaertsa, G., Severijnenb, R. and Timmermanc, H. (2005) Effect of antibiotics, prebiotics and probiotics in treatment for hepatic encephalopathy. Med. Hypothesis 64, 64-68. https://doi.org/10.1016/j.mehy.2004.07.029
  9. Brown, G. D. and Gordon, S. (2001) Immune recognition. A new receptor for beta-glucans. Nature 413, 36-37.
  10. Brownt, A. J., Goldsworthy, S. M., Barnes, A. A., Eilert, M. M., Tcheang, L., Daniels, D., Muir, A. I., Wigglesworth, M. J., Kinghorn, I., Fraser, N. J., Pike, N. B., Strumi, J. C., Steplewski, K. M., Murdock, P. R., Holder, J. C., Marshall, F. H., Szekeres, P. G., Wilson, S., Ignar, D. M., Foord, S. M., Wise, A. and Dowell, S. J. (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312-11319. https://doi.org/10.1074/jbc.M211609200
  11. Buchholt, H. C., Christensen, T. M. I. E., Fallesen, B., Ralet, M. C. and Thibault, J. F. (2004) Preparation and properities of enzymatically and chemically modifi ed sugar beet pectin. Carbohyd. Polym. 58, 149-161. https://doi.org/10.1016/j.carbpol.2004.06.043
  12. Crittenden, R. G. and Playne, M. J. (1996) Prodution, proterties and application of food-grade oligosaccharides. Trends Food Sci. Tech. 7, 353-361. https://doi.org/10.1016/S0924-2244(96)10038-8
  13. De Leenheer, L. and Hoebregs, H. (1994) Progress in the elucidation of the composition of chicory inulin. Starch 46, 193-196.
  14. De Simone C., Vesely R., Negri R., Bianchi Salvadori B., Zanzoglu S., Cilli, A. and Lucci, L. Enhancement of immune response of murine Peyer's patches by a diet supplemented with yogurt. Immunopharm. Immunot. 9, 87-100.
  15. Deng, C., Neill, M. A. O. and York, W. S. (2006) Selective chemical depolymerization of rhamnogalacturonans. Carbohyd. Res. 341, 474-484. https://doi.org/10.1016/j.carres.2005.12.004
  16. Ebringerova, A. and Heinze, T. (2000) Xylan and xylan derivatives - biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol. Rapid Commun. 21, 542-556. https://doi.org/10.1002/1521-3927(20000601)21:9<542::AID-MARC542>3.0.CO;2-7
  17. Ebringerova, A., Hromadkova, Z. and Heinze, T. (2005) Hemicellulose. Adv. Polym. Sci. 186, 1-67. https://doi.org/10.1007/b136816
  18. Ewaschuk, J. B., Walker, J. W., Diaz, H. and Madsen, K. L. (2006) Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice. J. Nutr. 136, 1483-1487. https://doi.org/10.1093/jn/136.6.1483
  19. Faik, A. (2010) Xylan Biosynthesis: News from the Grass. Plant Physiol. 153. 396-402. https://doi.org/10.1104/pp.110.154237
  20. Fujita, K., Kitahata, S., Kozo, H. and Hotoshi, H. (1992) Production of lactosucrose and its properties. In Carbohydrates in industrial synthesis (Proceeding of the symposium of the division of carbohydrate chemistry of the American chemical society) (Ckarke, M.A., ed.). pp. 68-76, Bartens, Berlin, Germany.
  21. Fujitani, S., Ueno, K., Kamiya, T., Tsukahara, T., Ishihara, K., Kitabayashi T. and Itabashi K. (2007) Increased number of CCR4- positive cells in the duodenum of ovalbumin-induced food allergy model NC/jic mice and antiallergic activity of fructooligosaccharides. Allergol. Int. 2, 131-138.
  22. Fukasawa, T., Murashima, K., Matsumoto, I., Hosono, A., Ohara, H., Nojiri, C., Koga, J., Kubota, H., Kanegae, M., Kaminogawa, S., Abe, K. and Kono, T. (2007) Identifi cation of marker genes for intestinal immunomodulating effect of a fructooligosaccharide by dna microarray analysis. J. Agric. Food Chem. 55, 3174-3179. https://doi.org/10.1021/jf062814q
  23. Gibson, G. R. and Roberfroid, M. B. (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401-1412.
  24. Gibson, R. G. and Wang, X. (1994) Enrichment of bifi dobacteria from human gut contents by oligofructose using continuous culture. FEMS Microbiol. Lett. 118, 121-127. https://doi.org/10.1111/j.1574-6968.1994.tb06813.x
  25. Gullon, P., Moura P., Esteves, M. P., Girio F. M., Dominguez, H. and Parajo, J. C. (2008) Assessment on the fermentability of xylooligosaccharides from rice husks by probiotic bacteria. J. Agric. Food Chem. 56, 7482-7487. https://doi.org/10.1021/jf800715b
  26. Harholt, J., Suttangkakul, A. and Scheller, H. V. (2010) Biosynthesis of Pectin. Plant Physiol. 153, 384-395. https://doi.org/10.1104/pp.110.156588
  27. Hart, D. A. and Kindel, P. K. (1970) Isolation and partial characterization of apiogalacturonans from cell wall of Lemna minor. Biochem. J. 116, 569-579. https://doi.org/10.1042/bj1160569
  28. Heldt, H. W. (2005) Plant biochemistry (3rd Ed), pp. 265-269, Elsevier academic press., London, UK.
  29. Hendriks, A. T. W. M. and Zeeman, G. (2009) Pretreatment to enhance the digestibility of lignocelluloses biomass. Bioresource Technol. 100, 10-18. https://doi.org/10.1016/j.biortech.2008.05.027
  30. Herre, J., Gordon, S. and Brown G. D. (2004) Dectin-1 and its role in the recognition of $\beta$-glucans by macrophages. Mol. Immunol. 40, 869-876. https://doi.org/10.1016/j.molimm.2003.10.007
  31. Hiroyuki, H., Masayasu, T. and Toshiro, S. (1995) Agent for Improving Glucose Tolerance Disorder. Japanese Patent JP 19957324036.
  32. Hoentjen, F., Welling, G. W., Harmsen, H. J. M., Zhang, X., Snart, J., Tannock, G. W., Lien, K., Churchill, T. A., Lupicki, M. and Dieleman, L. A. (2005) Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microfl ora changes and immunomodulation. Inflamm. Bowel. Dis. 11, 977-985. https://doi.org/10.1097/01.MIB.0000183421.02316.d5
  33. Holck, J., Hjerno, K., Lorentzen, A., Vigsnaes, L. K., Hemmingsen, L., Licht, T. R., Mikkelsen, J. D. and Meyer, A. (2011) Tailored enzymatic production of oligosaccharides from sugar beet pectin and evidence of differential effects of a single DP chain length difference on human faecal microbiota composition after in vitro fermentation. Process Biochem. 46, 1039-1049. https://doi.org/10.1016/j.procbio.2011.01.013
  34. Hounsell, E. F., Young, M. and Davies, M. J. (1997) Glycoprotein changes in tumours: a renaissance in clinical applications. Clin. Sci. 93, 287-293. https://doi.org/10.1042/cs0930287
  35. Ishii, T. (1997) O-Acetylated oligosaccharides from pectins of potato tuber cell wall. Plant Physiol. 113, 1265-1272. https://doi.org/10.1104/pp.113.4.1265
  36. Izumi, Y., Azumi, N., Kido, Y. and Nakabo, Y. (2004) Oral preparations for atopic dermatitis containing acidic xylooligosaccharides. Japan Patent JP 2004210666.
  37. Jones, C., Previato, J. O., Mendonça-Previato, L. and Wait, R. (1994) The use of NMR spectroscopy in the structure determination of a Leptomonas samueli glycosylphosphosphingolipid-derived oligosaccharide. Braz. J. Med. Biol. Res. 27, 219-226.
  38. Kabel, M. A., Carvalheiro, F., Garrote, G., Avgerinos, E., Koukios, E., Parajo, J. C., Gírio, F. M., Schols, H. A. and Voragen, A. G. J. (2002a) Hydrothermally treated xylan rich by-products yield different classes of xylo-oligosaccharides. Carbohyd. Polym. 50, 47-56. https://doi.org/10.1016/S0144-8617(02)00045-0
  39. Kabel, M. A., Kortenoeven, L., Schols, H. A. and Voragen, A. G. J. (2002b) In vitro fermentation of differently substituted xylo-oligosaccharides. J. Agric. Food Chem. 50, 6205-6210. https://doi.org/10.1021/jf020220r
  40. Kaplan, H. and Hutkins, R. W. (2000) Fermentation of fructooligosaccharides by lactic acid and bifi dobacteria. Appl. Environ. Microbiol. 66, 2682-2684. https://doi.org/10.1128/AEM.66.6.2682-2684.2000
  41. Katapodis, P., Vardakou, M., Kalogeris, E., Kekos, D., Macris, B. J. and Christakopoulos, P. (2003) Enzymic production of a feruloylated oligosaccharide with antioxidant activity from wheat flour arabinoxylan. Eur. J. Nutr. 42, 55-60. https://doi.org/10.1007/s00394-003-0400-z
  42. Kleesseen, B., Hartmann, L. and Blaut, M. (2001) Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. Br. J. Nutr. 86, 291-300. https://doi.org/10.1079/BJN2001403
  43. Komalavilas, P. and Mort, A. J. (1989) The acetylation at O-3 of galacturonic acid in the raamnose-rich portion of pectins. Carbohyd. Res. 189, 261-272. https://doi.org/10.1016/0008-6215(89)84102-3
  44. Kruse, H. P., Kleessen B. and Blaut M. (2001) Oligofructose and longchain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. Br. J. Nutr. 86, 291-300. https://doi.org/10.1079/BJN2001403
  45. Kuhn, R. C. and Maugeri, F. F. (2010) Separation of fructooligosaccharides using zeolite fixed bed columns. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878, 2023-2028. https://doi.org/10.1016/j.jchromb.2010.05.039
  46. Lenoir-Wijnkoop, I., Sanders, M. E., Cabana, M. D., Caglar, E., Corthier, G., Rayes, N., Sherman, P. M., Timmerman, H. M., Vaneechoutte, M., Van Loo J. and Wolvers D. A. W. (2007) Probiotic and prebiotic infl uence beyond the intestinal tract. Nutr. Rev. 65, 469-489. https://doi.org/10.1111/j.1753-4887.2007.tb00272.x
  47. Li, B., Russell, S. C., Zhang, J., Hedrick, J. L. and Lebrilla, C. B. (2011) Structure determination by MALDI-IRMPD mass spectrometry and exoglycosidase digestions of O-linked oligosaccharides from Xenopus borealis egg jelly. Glycobiology 21, 877-894. https://doi.org/10.1093/glycob/cwr003
  48. Lomax, A. R. and Calder, P. C. (2009) Probiotics, immune function, infection and inflammation: a review of the evidence from studies conducted in humans. Curr. Pharm. Des. 15, 1428-518. https://doi.org/10.2174/138161209788168155
  49. Longland, J. M., Fry, S. C. and Trewavas, A. J. (1989) Developmental control of apiogalacturonan biosynthesis and UDP-apiose production in a duck-weed. Plant Physiol. 90, 972-976. https://doi.org/10.1104/pp.90.3.972
  50. Lopez, H. W., Coudray, C., Bellaanger, J., Levrat-verny, M. A., Demigne, C., Rayssiguier, Y. and Remesy, C. (2000) Resistant starch improves mineral assimilation in rats adapted to a wheat bran diet. Nutr. Res. 20, 141-155. https://doi.org/10.1016/S0271-5317(99)00146-3
  51. Matsunaga, T., Ishii, T., Matsumoto, S., Higuchi, M., Darvill, A., Albersheim, P. and O'Neill, M. A. (2004) Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes, and bryophytes: implication for the evolution of vascular plants. Plant Physiol. 134, 339-351. https://doi.org/10.1104/pp.103.030072
  52. Mehrlaender, K., Dietrich, H., Sembries, S., Dongowski, G. and Will, F. (2002) Structural characterization of oligosaccharides and polysaccharides from apple juices produced by enzymatic pomace liquefaction. J. Agric. Food Chem. 50, 1230-1236. https://doi.org/10.1021/jf011007i
  53. Mitsuoka, T., Hidaka, H. and Eida, T. (1987) Effect of fructo-oligosaccharides on intestinal microflora. Mol. Nutr. Food Res. 31, 427-436.
  54. Mohnen, D. (2008) Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 11, 266-277. https://doi.org/10.1016/j.pbi.2008.03.006
  55. Monsan, P., Valet, P., Remaud, S. M. and Saulnier, B. J. S. (2004) Use of prebiotics for the prevention of onset of type II diabetes. Fr. Patent FR 20042844453.
  56. Montgomery, E. and Hudson, C. S. (1929) Transformation of lactose to a new disaccharide, lactoketose. Science 69, 556-557.
  57. Moure, A., Gullón, P., Domínguez, H. and Parajó, J. C. (2006) Advandes in the manufacture, purifi cation and applications of xylooligosaccharides as food additives and nutraceuticals. Process Biochem. 41, 1913-1923. https://doi.org/10.1016/j.procbio.2006.05.011
  58. Mutter, M., Colquhoun, I. J., Beldman, G., Schols, H. A., Bakx, E. J. and Voragen, A. G. (1998) Characterization of Recombinant Rhamnoga lacturonan $\alpha$-l-Rhamnopyranosyl-(1,4)-$\alpha$-d-Galactopyrano syluro nide Lyase from Aspergillus aculeatus: An Enzyme That Frag ments Rhamnogalacturonan I Regions of Pectin. Plant Physiol. 117, 141-152. https://doi.org/10.1104/pp.117.1.141
  59. Nabarlatz, D., Farriol, X. and Montane, D. (2005) Autohydrolysis of almond shells for the production of xylo-oligosaccharides: Product characteristics and reaction kinetics. Ind. Eng. Chem. Res. 44, 7746-7755. https://doi.org/10.1021/ie050664n
  60. Nauta, A. and Schoterman, M. H. C. (2009) Galacto-oligosaccharides. In Handbook of prebiotics and probiotics Ingredients (Ed. Jardine,S.) 2nd Ed., pp. 75-88, CRC Press, Boca Raton, London, New York.
  61. Nilsson, N. E., Kotarsky, K., Owman, C. and Olde, B. (2003) Identifi cation of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303, 1047-1052. https://doi.org/10.1016/S0006-291X(03)00488-1
  62. Nurmi, J. T., Puolakkainene, P. A. and Rautonen, N. E. (2005) Bifidobacterium lactis sp. 420 up-regulates cyclooxygenase (COX)1 and down-regulates COX-2 gene expression in a Caco-2 cell culture model. Nutr. Cancer 51, 83-92. https://doi.org/10.1207/s15327914nc5101_12
  63. Olano-Martin, E., Mountzouris, G. R., Gibson, G. R. and Rastall, R. A. (2001) Continuous production of pectic oligosaccharides in an enzyme membrane reactor. J. Food Sci. 46, 1035-1042.
  64. Ouwehand, A. C., Derrien, M., de Vos, W., Tiionen, K. and Rautonene, N. (2005) Prebiotics and other microbial subsrates for gut functionality. Curr. Opin. Biotechol. 16, 212-217. https://doi.org/10.1016/j.copbio.2005.01.007
  65. Playne, M. J. and Crittenden, R. (1996) Commercially available oligosaccharides. Bull. Int. Dairy Fed. 313, 10-22.
  66. Popper, Z. A. (2008) Evolution and diversity of green plant cell walls. Curr. Opin. Plant Biol. 11, 286-292. https://doi.org/10.1016/j.pbi.2008.02.012
  67. Ramirez-Farias, C., Slezak, K., Fuller, Z., Duncan, A., Holtrop, G. and Louis, P. (2008) Effect of inulin on the human gut microbiota: stimulation of Bifi dobacterium adolescentis and Faecalibacterium prausnitzii. Br. J. Nutr. 101, 541-550.
  68. Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., Wolvers, D., Watzl, B., Szajewska, H., Stahl, B., Guarner, F., Respondek, F., Whelan, K., Coxam, V., Davicco, M. J., Léotoing, L., Wittrant, Y., Delzenne, N. M., Cani, P. D., Neyrinck, A. M. and Meheust, A. (2010) Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104, s1-s63. https://doi.org/10.1017/S0007114510003909
  69. Sanderson, I. R. (2007) Dietary modulation of GALT. J. Nutr. 137, 2557S-2562S. https://doi.org/10.1093/jn/137.11.2557S
  70. Saulnier, D. M., Kolida, S. and Gibson, G. R. (2009) Microbiology of the human intestinal tract and approaches for its dietary modulation. Curr. Pharm. Des. 15, 1403-1414. https://doi.org/10.2174/138161209788168128
  71. Scheller, H. V. and Ulvskov, P. (2010) Hemicellulose. Annu. Rev. Plant Biol. 61, 263-289. https://doi.org/10.1146/annurev-arplant-042809-112315
  72. Scholz-Ahrens, K. E., Schaafsma, G., van den Heuvel, E. G. and Schrezenmeir, J. (2001) Effects of prebiotics on mineral metabolism. Am J. Clin. Nutr. 73, 459-464. https://doi.org/10.1093/ajcn/73.2.459s
  73. Sharon, N. and Ofek, I. (2000) Safe as mother's milk: Carbohydrates as future anti-adhesion drugs for bacterial diseases. Glycoconjugate J. 17, 659-664. https://doi.org/10.1023/A:1011091029973
  74. Shimoda, K., Hamada, H. and Hamada, H. (2011) Synthesis of xylooligosaccharides of daidzein and their anti-oxidant and anti-allergic activities. Int. J. Mol. Sci. 12, 5616-5625. https://doi.org/10.3390/ijms12095616
  75. Shin, J. H., Choi, J. H., Lee, O. S., Kim, Y. M., Lee, D. S., Kwak, Y. Y., Kim, W. C. and Rhee, I. K. (2009) Thermostable xylanase from Streptomyces thermocyaneoviolaceus for optimal production of xylooligosaccharides. Biotechnol. Bioprocess Eng. 14, 391-399. https://doi.org/10.1007/s12257-008-0220-3
  76. Shoaf, K., Mulvey, G. L., Armstrong, G. D. and Hutkins, R. W. (2006) Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect Immun. 74, 6920-6928. https://doi.org/10.1128/IAI.01030-06
  77. Shoaf-Sweeney, K. D. and Hutkins, R. W. (2009) Adherence, anti-adherence, and oligosaccharides preventing pathogens from sticking to the host. Adv. Food Nutr. Res. 55, 101-161.
  78. Swennen, K., Courtin, C. M., Bruggen, B. V., Vandecasteele, C. and Delcour, J. A. (2005) Ultrafiltration and ethanol precipitation for isolation of arabinoxylooligosaccharides with different structures. Carbohyd. Polym. 62, 283-292. https://doi.org/10.1016/j.carbpol.2005.08.001
  79. Takasaki, M., Inaba, H., Ohta, A., Motohashi, Y., Sakai, K., Morris, H. and Sakuma, K. (2000) Dietary short-chain fructooligosaccharides increase calbindin-D9k levels only in the large intestine in rats independent of dietary calcium defi ciency or serum 1,25 dihydroxy vitamin D levels. Int. Vitam. Nutr. Res. 70, 206-213. https://doi.org/10.1024/0300-9831.70.5.206
  80. Teleman, A., Lundqvist, J., Tjerneld, F., Stalbrand, H. and Dahlman, O. (2000) Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing $^{1}H$ and $^{13}C$ NMR spectroscopy. Carbohyd. Res. 329, 807-815. https://doi.org/10.1016/S0008-6215(00)00249-4
  81. Timell, T. E. (1964) Wood Hemicelluloses: Part I. Adv. Carbohyd. Chem. 19, 247-302. https://doi.org/10.1016/S0096-5332(08)60284-2
  82. Vazquez, M. J., Alonso, J. L., Domínguez, H. and Parajo, J. C. (2000) Xylooligosacchrides: manufacture and application. Trends Food Sci. Technol. 11, 387-393. https://doi.org/10.1016/S0924-2244(01)00031-0
  83. Vazquez, M. J., Alonso, J. L., Dominguez, H. and Parajo, J. G. (2002) Enzymatic processing of crude xylooligomer solutions obtained by autohydrolysis of eucalyptus wood. Food Biotechnol. 16, 91-105. https://doi.org/10.1081/FBT-120014321
  84. Vegas, R., Alonso, J. L., Dominguez, H. and Parajo, J. C. (2005) Manufacture and refi ning of oligosaccharides from industrial solid wastes. Ind. Eng. Chem. Res. 91, 93-100.
  85. Vegas, R., Luque, S., Alvarez, J. R., Alonso, J. L., Domínguez, H. and Parajo, J. C. (2006) Membrane-assisted processing of xylooligosaccharide- containing liquors. J. Agric. Food Chem. 54, 5430- 5436. https://doi.org/10.1021/jf060525w
  86. Wende, G. and Fry, S. C. (1997) 2-O-beta-D-xylopyranosyl-(5-Oferuloyl)- L-arabinose, a widespread component of grass cell walls. Phytochem. 44, 1019-1030. https://doi.org/10.1016/S0031-9422(96)00649-8
  87. Wichienchot, S., Prasertsan, P., Hongpattarakere, T. and Rastall, R. A. (2009) Manufacture of gluco-oligosaccharide prebiotic by Gluconobacter oxydans NCIMB 4943. Songklanakarin J. Sci. Technol. 31, 597-603.
  88. Wilkie, K. C. B. (1979) The hemicelluloses of grasses and cereals. Adv. Carbohyd. Chem. Biochem. 36, 215-264. https://doi.org/10.1016/S0065-2318(08)60237-1
  89. Yamaguchi, F., Shimizu, N. and Hatanaka, C. (1994) Preparation and physiological effect of low-molecular-weight pectin. Biosci. Biotech. Biochem. 58, 679-682. https://doi.org/10.1271/bbb.58.679
  90. Yoshino, K., Higashi, N. and Koga, K. (2006) Preventive effects of acidic xylooligosaccharide on contact hypersensitivity in mice. J. Health Sci. 5, 628-632.
  91. Yuan, Q. P., Zhang, H., Qian, Z. M. and Yang, X. J. (2004) Pilot-plant production of xylo-oligosaccharides from corncob by steaming, enzymatic hydrolysis and nanofi ltration. J. Chem. Technol. Biot. 79, 1073-1079. https://doi.org/10.1002/jctb.1071
  92. Zablackis, E., Huang, J., Muller, B., Darvill, A. G. and Albersheim, P. (1995) Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol. 107, 1129-1138. https://doi.org/10.1104/pp.107.4.1129
  93. Zandleven, J., Beldman, G., Bosveld, M., Schols, H. A. and Voragen, A. G. J. (2006) Enzymatic degradation studies of xylogalacturonans from apple and potato, using xylogalacturonan hydrolase. Carbohyd. Polym. 65, 495-503. https://doi.org/10.1016/j.carbpol.2006.02.015
  94. Zandleven, J., Sorensen, S. O., Harholt, J., Beldman, G., Schols, H. A., Scheller, H. V. and Voragen, A. J. (2007) Xylogalacturonan exists in cell walls from various tissues of Arabidopsis thaliana. Phytochem. 68, 1219-1226. https://doi.org/10.1016/j.phytochem.2007.01.016
  95. Zhao, Z. Y., Liang, L., Fan, X., Yu, Z., Hotchkiss, A. T., Wilk, B. J. and Eliaz, I. (2008) The role of modifi ed citrus pectin as an effective chelator of lead in children hospitalized with toxic lead levels. Altern. Ther. Health M. 14, 34-38.

Cited by

  1. Oligosaccharides: a boon from nature’s desk vol.6, pp.1, 2016, https://doi.org/10.1186/s13568-016-0253-5
  2. Plant prebiotics and human health: Biotechnology to breed prebiotic-rich nutritious food crops vol.17, pp.5, 2014, https://doi.org/10.1016/j.ejbt.2014.07.004
  3. Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA) vol.5, 2014, https://doi.org/10.3389/fpls.2014.00306
  4. The Anti-Oxidant and Antitumor Properties of Plant Polysaccharides vol.44, pp.03, 2016, https://doi.org/10.1142/S0192415X16500269
  5. Vibrational Fingerprint Mapping Reveals Spatial Distribution of Functional Groups of Lignin in Plant Cell Wall vol.87, pp.18, 2015, https://doi.org/10.1021/acs.analchem.5b02434
  6. Daesiho-Tang Is an Effective Herbal Formulation in Attenuation of Obesity in Mice through Alteration of Gene Expression and Modulation of Intestinal Microbiota vol.11, pp.11, 2016, https://doi.org/10.1371/journal.pone.0165483
  7. Prebiotic effect of native noncovalent arabinogalactan—flavonoid conjugates on bifidobacteria vol.63, pp.9, 2014, https://doi.org/10.1007/s11172-014-0718-0
  8. Structure characteristics of a water-soluble polysaccharide purified from dragon fruit (Hylocereus undatus) pulp vol.146, 2016, https://doi.org/10.1016/j.carbpol.2016.03.060
  9. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications vol.8, pp.3, 2012, https://doi.org/10.3390/foods8030092
  10. Valorizing cabbage (Brassica oleracea L. var. capitata) and capsicum (Capsicum annuum L.) wastes: in vitro health-promoting activities vol.56, pp.10, 2019, https://doi.org/10.1007/s13197-019-03912-5
  11. New View on Dietary Fiber Selection for Predictable Shifts in Gut Microbiota vol.11, pp.1, 2020, https://doi.org/10.1128/mbio.02179-19
  12. Xylooligosaccharides from steam-exploded barley straw: Structural features and assessment of bifidogenic properties vol.124, pp.None, 2020, https://doi.org/10.1016/j.fbp.2020.08.014
  13. Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials vol.12, pp.45, 2012, https://doi.org/10.1039/d0nr04795c
  14. Consumer’s acceptability and health consciousness of probiotic and prebiotic of non-dairy products vol.151, pp.None, 2022, https://doi.org/10.1016/j.foodres.2021.110842
  15. Valorization of sugar beet pulp to value-added products: A review vol.346, pp.None, 2012, https://doi.org/10.1016/j.biortech.2021.126580