DOI QR코드

DOI QR Code

Whole Brain Radiation-Induced Cognitive Impairment: Pathophysiological Mechanisms and Therapeutic Targets

  • Lee, Yong-Woo (Department of Biomedical Sciences and Pathobiology, Virginia Tech) ;
  • Cho, Hyung-Joon (School of Biomedical Engineering and Sciences, Virginia Tech) ;
  • Lee, Won-Hee (Department of Medicine, Stanford University School of Medicine) ;
  • Sonntag, William E. (Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center)
  • Received : 2012.06.21
  • Accepted : 2012.07.04
  • Published : 2012.07.31

Abstract

Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tumor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cellular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the identification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defining a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy.

Keywords

References

  1. Abbott, N. J., Ronnback, L. and Hansson, E. (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41-53. https://doi.org/10.1038/nrn1824
  2. Abou-Seif, M. A., El-Naggar, M. M., El-Far, M., Ramadan, M. and Salah, N. (2003) Amelioration of radiation-induced oxidative stress and biochemical alteration by SOD model compounds in pre-treated gamma-irradiated rats. Clin. Chim. Acta. 337, 23-33. https://doi.org/10.1016/S0009-8981(03)00192-X
  3. Acharya, M. M., Christie, L. A., Lan, M. L., Donovan, P. J., Cotman, C. W., Fike, J. R. and Limoli, C. L. (2009) Rescue of radiation-induced cognitive impairment through cranial transplantation of human embryonic stem cells. Proc. Natl. Acad. Sci. USA 106, 19150-19155. https://doi.org/10.1073/pnas.0909293106
  4. Acharya, M. M., Christie, L. A., Lan, M. L., Giedzinski, E., Fike, J. R., Rosi, S. L. and Imoli, C. L. (2011) Human neural stem cell transplantation ameliorates radiation-induced cognitive dysfunction. Cancer Res. 71, 4834-4845. https://doi.org/10.1158/0008-5472.CAN-11-0027
  5. Acharya, M. M., Lan, M. L., Kan, V. H., Patel, N. H., Giedzinski, E., Tseng, B. P. and Limoli, C. L. (2010) Consequences of ionizing radiation-induced damage in human neural stem cells. Free Radic. Biol. Med. 49, 1846-1855. https://doi.org/10.1016/j.freeradbiomed.2010.08.021
  6. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., Fiebich, B. L.,Finch, C. E., Frautschy, S., Griffi n, W. S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I. R., McGeer, P. L., O'Banion, M. K., Pachter, J., Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F. L., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G. and Wyss-Coray, T. (2000) Infl ammation and Alzheimer's disease. Neurobiol. Aging 21, 383-421. https://doi.org/10.1016/S0197-4580(00)00124-X
  7. Akiyama, K., Tanaka, R., Sato, M. and Takeda, N. (2001) Cognitive dysfunction and histological fi ndings in adult rats one year after whole brain irradiation. Neurol. Med. Chir (Tokyo). 41, 590-598. https://doi.org/10.2176/nmc.41.590
  8. Alavi, A., Hood, J. D., Frausto, R., Stupack, D. G. and Cheresh, D. A. (2003) Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301, 94-96. https://doi.org/10.1126/science.1082015
  9. American Brain Tumor Association. (2012) Brain Tumor Facts. http:// www.abta.org/news/brain-tumor-fact-sheets/
  10. Andersen, A. P. (1978) Postoperative irradiation of glioblastomas. Results in a randomized series. Acta. Radiol. Oncol. Radiat. Phys. Biol. 17, 475-484. https://doi.org/10.3109/02841867809128178
  11. Aoudjit, F., Masure, S., Opdenakker, G., Potworowski, E. F. and St- Pierre, Y. (1999) Gelatinase B (MMP-9), but not its inhibitor (TIMP- 1), dictates the growth rate of experimental thymic lymphoma. Int. J. Cancer 82, 743-747. https://doi.org/10.1002/(SICI)1097-0215(19990827)82:5<743::AID-IJC19>3.0.CO;2-6
  12. Araya, J., Maruyama, M., Sassa, K., Fujita, T., Hayashi, R., Matsui, S., Kashii, T., Yamashita, N., Sugiyama, E. and Kobayashi, M. (2001) Ionizing radiation enhances matrix metalloproteinase-2 production in human lung epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 280, L30-38. https://doi.org/10.1152/ajplung.2001.280.1.L30
  13. Baker, D. G. and Krochak, R. J. (1989) The response of the microvascular system to radiation: a review. Cancer Invest. 7, 287-294. https://doi.org/10.3109/07357908909039849
  14. Baluna, R. G., Eng, T. Y. and Thomas, C. R. (2006) Adhesion molecules in radiotherapy. Radiat. Res. 166, 819-831. https://doi.org/10.1667/RR0380.1
  15. Banerjee, S. and Bhat, M. A. (2007) Neuron-glial interactions in bloodbrain barrier formation. Annu. Rev. Neurosci. 30, 235-258. https://doi.org/10.1146/annurev.neuro.30.051606.094345
  16. Barlind, A., Karlsson, N., Björk-Eriksson, T., Isgaard, J. and Blomgren, K. (2010) Decreased cytogenesis in the granule cell layer of the hippocampus and impaired place learning after irradiation of the young mouse brain evaluated using the IntelliCage platform. Exp. Brain Res. 201, 781-787. https://doi.org/10.1007/s00221-009-2095-8
  17. Barnett, J. M., McCollum, G. W., Fowler, J. A., Duan, J. J., Kay, J. D., Liu, R. Q., Bingaman, D. P. and Penn, J. S. (2007) Pharmacologic and genetic manipulation of MMP-2 and -9 affects retinal neovascularization in rodent models of OIR. Invest. Ophthalmol. Vis. Sci. 48, 907-915. https://doi.org/10.1167/iovs.06-0082
  18. Behin, A. and Delattre, J. Y. (2004) Complications of radiation therapy on the brain and spinal cord. Semin. Neurol. 24, 405-417. https://doi.org/10.1055/s-2004-861535
  19. Bentzen, S. M. (2006) Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat. Rev. Cancer 6, 702-713. https://doi.org/10.1038/nrc1950
  20. Bernstein, M., Marotta, T., Stewart, P., Glen, J., Resch, L. and Henkelman, M. (1990) Brain damage from 125I brachytherapy evaluated by MR imaging, a blood-brain barrier tracer, and light and electron microscopy in a rat model. J. Neurosurg. 73, 585-593. https://doi.org/10.3171/jns.1990.73.4.0585
  21. Bouloumie, A., Marumo, T., Lafontan, M. and Busse, R. (1999) Leptin induces oxidative stress in human endothelial cells. FASEB J. 13, 1231-1238. https://doi.org/10.1096/fasebj.13.10.1231
  22. Breier, G., Albrecht, U., Sterrer, S. and Risau, W. (1992) Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114, 521-532.
  23. Brown, W. R., Blair, R. M., Moody, D. M., Thore, C. R., Ahmed, S., Robbins, M. E. and Wheeler, K. T. (2007) Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: a potential rat model of vascular dementia. J. Neurol. Sci. 257, 67-71. https://doi.org/10.1016/j.jns.2007.01.014
  24. Brown, W. R., Thore, C. R., Moody, D. M., Robbins, M. E. and Wheeler, K. T. (2005) Vascular damage after fractionated whole-brain irradiation in rats. Radiat. Res. 164, 662-668. https://doi.org/10.1667/RR3453.1
  25. Bucci, M. K., Bevan, A. and Roach, M. 3rd. (2005) Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA. Cancer J. Clin. 55, 117-134. https://doi.org/10.3322/canjclin.55.2.117
  26. Buckner, J. C., Brown, P. D., O'Neill, B. P., Meyer, F. B., Wetmore, C. J. and Uhm, J. H. (2007) Central nervous system tumors. Mayo. Clin. Proc. 82, 1271-1286. https://doi.org/10.4065/82.10.1271
  27. Calvo, W., Hopewell, J. W., Reinhold, H. S., van den Berg, A. P. and Yeung, T. K. (1987) Dose-dependent and time-dependent changes in the choroid plexus of the irradiated rat brain. Br. J. Radiol. 60, 1109-1117. https://doi.org/10.1259/0007-1285-60-719-1109
  28. Castro, M. G., Cowen, R., Williamson, I. K., David, A., Jimenez-Dalmaroni, M. J., Yuan, X., Bigliari, A., Williams, J. C., Hu, J. and Lowenstein, P. R. (2003) Current and future strategies for the treatment of malignant brain tumors. Pharmacol. Ther. 98, 71-108. https://doi.org/10.1016/S0163-7258(03)00014-7
  29. Chan, A. S., Cheung, M. C., Law, S. C. and Chan, J. H. (2004) Phase II study of alpha-tocopherol in improving the cognitive function of patients with temporal lobe radionecrosis. Cancer 100, 398-404. https://doi.org/10.1002/cncr.11885
  30. Chandana, S. R., Movva, S., Arora, M. and Singh, T. (2008) Primary brain tumors in adults. Am. Fam. Physician 77, 1423-1430.
  31. Chang, E. L., Wefel, J. S., Hess, K. R., Allen, P. K., Lang, F. F., Kornguth, D. G., Arbuckle, R. B., Swint, J. M., Shiu, A. S., Maor, M. H. and Meyers, C. A. (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus wholebrain irradiation: a randomised controlled trial. Lancet Oncol. 10, 1037-1044. https://doi.org/10.1016/S1470-2045(09)70263-3
  32. Chiang, C. S., Hong, J. H., Stalder, A., Sun, J. R., Withers, H. R. and McBride, W. H. (1997) Delayed molecular responses to brain irradiation. Int. J. Radiat. Biol. 72, 45-53. https://doi.org/10.1080/095530097143527
  33. Cohadon, F. (1990) Indications for surgery in the management of gliomas. Adv. Tech. Stand. Neurosurg. 17, 189-234. https://doi.org/10.1007/978-3-7091-6925-4_6
  34. Collins-Underwood, J. R., Zhao, W., Sharpe, J. G. and Robbins, M. E. (2008) NADPH oxidase mediates radiation-induced oxidative stress in rat brain microvascular endothelial cells. Free Radic. Biol. Med. 45, 929-938. https://doi.org/10.1016/j.freeradbiomed.2008.06.024
  35. Conner, K. R., Forbes, M. E., Lee, W. H., Lee, Y. W. and Riddle, D. R. (2011) AT1 receptor antagonism does not infl uence early radiationinduced changes in microglial activation or neurogenesis in the normal rat brain. Radiat. Res. 176, 71-83. https://doi.org/10.1667/RR2560.1
  36. Darzy, K. H., Pezzoli, S. S., Thorner, M. O. and Shalet, S. M. (2005) The dynamics of growth hormone (GH) secretion in adult cancer survivors with severe GH defi ciency acquired after brain irradiation in childhood for nonpituitary brain tumors: evidence for preserved pulsatility and diurnal variation with increased secretory disorderliness. J. Clin. Endocrinol. Metab. 90, 2794-2803. https://doi.org/10.1210/jc.2004-2002
  37. d'Avella, D., Cicciarello, R., Albiero, F., Mesiti, M., Gagliardi, M. E., Russi, E., d'Aquino, A., Tomasello, F. and d'Aquino, S. (1992) Quantitative study of blood-brain barrier permeability changes after experimental whole-brain radiation. Neurosurgery 30, 30-34. https://doi.org/10.1227/00006123-199201000-00006
  38. Davis, S., Aldrich, T. H., Jones, P. F., Acheson, A., Compton, D. L., Jain, V., Ryan, T. E., Bruno, J., Radziejewski, C., Maisonpierre, P. C. and Yancopoulos, G. D. (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87, 1161-1169. https://doi.org/10.1016/S0092-8674(00)81812-7
  39. DeAngelis, L. M., Delattre, J. Y. and Posner, J. B. (1989) Radiationinduced dementia in patients cured of brain metastases. Neurology 39, 789-796. https://doi.org/10.1212/WNL.39.6.789
  40. Delattre, J. Y., Shapiro, W. R. and Posner, J. B. (1989) Acute effects of low-dose cranial irradiation on regional capillary permeability in experimental brain tumors. J. Neurol. Sci. 90, 147-153. https://doi.org/10.1016/0022-510X(89)90097-X
  41. Deng, Z., Sui, G., Rosa, P. M. and Zhao, W. (2012) Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells. PLoS. One. 7, e36739. https://doi.org/10.1371/journal.pone.0036739
  42. Denham, J. W. and Hauer-Jensen, M. (2002) The radiotherapeutic injury--a complex 'wound'. Radiother. Oncol. 63, 129-145. https://doi.org/10.1016/S0167-8140(02)00060-9
  43. Dheen, S. T., Kaur, C. and Ling, E. A. (2007) Microglial activation and its implications in the brain diseases. Curr. Med. Chem. 14, 1189- 1197. https://doi.org/10.2174/092986707780597961
  44. Dimitrievich, G. S., Fischer-Dzoga, K. and Griem, M. L. (1984) Radiosensitivity of vascular tissue. I. Differential radiosensitivity of capillaries: a quantitative in vivo study. Radiat. Res. 99, 511-535. https://doi.org/10.2307/3576327
  45. Diserbo, M., Agin, A., Lamproglou, I., Mauris, J., Staali, F., Multon, E. and Amourette, C. (2002) Blood-brain barrier permeability after gamma whole-body irradiation: an in vivo microdialysis study. Can. J. Physiol. Pharmacol. 80, 670-678. https://doi.org/10.1139/y02-070
  46. Douw, L., Klein, M., Fagel, S. S., van den Heuvel, J., Taphoorn, M. J., Aaronson, N. K., Postma, T. J., Vandertop, W. P., Mooij, J. J., Boerman, R. H., Beute, G. N., Sluimer, J. D., Slotman, B. J., Reijneveld, J. C. and Heimans, J. J. (2009) Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term followup. Lancet Neurol. 8, 810-818. https://doi.org/10.1016/S1474-4422(09)70204-2
  47. Erol, F. S., Topsakal, C., Ozveren, M. F., Kaplan, M., Ilhan, N., Ozercan, I. H. and Yildiz, O. G. (2004) Protective effects of melatonin and vitamin E in brain damage due to gamma radiation: an experimental study. Neurosurg. Rev. 27, 65-69. https://doi.org/10.1007/s10143-003-0291-8
  48. Ferrara, N. (1999) Vascular endothelial growth factor: molecular and biological aspects. Curr. Top. Microbiol. Immunol. 237, 1-30. https://doi.org/10.1007/978-3-642-59953-8_1
  49. Ferrara, N., Gerber, H. P. and LeCouter, J. (2003) The biology of VEGF and its receptors. Nat. Med. 9, 669-676. https://doi.org/10.1038/nm0603-669
  50. Fiala, M., Zhang, L., Gan, X., Sherry, B., Taub, D., Graves, M. C., Hama, S., Way, D., Weinand, M., Witte, M., Lorton, D., Kuo, Y. M. and Roher, A. E. (1998) Amyloid-beta induces chemokine secretion and monocyte migration across a human blood--brain barrier model. Mol. Med. 4, 480-489.
  51. Fike, J. R., Cann, C. E., Phillips, T. L., Bernstein, M., Gutin, P. H., Turowski, K., Weaver, K. A., Davis, R. L., Higgins, R. J. and DaSilva, V. (1985) Radiation brain damage induced by interstitial 125I sources: a canine model evaluated by quantitative computed tomography. Neurosurgery 16, 530-537. https://doi.org/10.1227/00006123-198504000-00015
  52. Flora, G., Lee, Y. W., Nath, A., Maragos, W., Hennig, B. and Toborek, M. (2002) Methamphetamine-induced TNF-alpha gene expression and activation of AP-1 in discrete regions of mouse brain: potential role of reactive oxygen intermediates and lipid peroxidation. Neuromolecular Med. 2, 71-85. https://doi.org/10.1385/NMM:2:1:71
  53. Flowers, A. (2000) Brain tumors in the older person. Cancer Control 7, 523-538. https://doi.org/10.1177/107327480000700604
  54. Fukuda, A., Fukuda, H., Jönsson, M., Swanpalmer, J., Hertzman, S., Lannering, B., Bjork-Eriksson, T., Marky, I. and Blomgren, K. (2005) Progenitor cell injury after irradiation to the developing brain can be modulated by mild hypothermia or hyperthermia. J. Neurochem. 94, 1604-1619. https://doi.org/10.1111/j.1471-4159.2005.03313.x
  55. Gaber, M. W., Sabek, O. M., Fukatsu, K., Wilcox, H. G., Kiani, M. F. and Merchant, T. E. (2003) Differences in ICAM-1 and TNF-alpha expression between large single fraction and fractionated irradiation in mouse brain. Int. J. Radiat. Biol. 79, 359-366. https://doi.org/10.1080/0955300031000114738
  56. Garcia-Alloza, M., Prada, C., Lattarulo, C., Fine, S., Borrelli, L. A., Betensky, R., Greenberg, S. M., Frosch, M. P. and Bacskai, B. J. (2009) Matrix metalloproteinase inhibition reduces oxidative stress associated with cerebral amyloid angiopathy in vivo in transgenic mice. J. Neurochem. 109, 1636-1647. https://doi.org/10.1111/j.1471-4159.2009.06096.x
  57. Gardner, J. and Ghorpade, A. (2003) Tissue inhibitor of metalloproteinase (TIMP)-1: the TIMPed balance of matrix metalloproteinases in the central nervous system. J. Neurosci. Res. 74, 801-806. https://doi.org/10.1002/jnr.10835
  58. Giannelli, G., Bergamini, C., Marinosci, F., Fransvea, E., Quaranta, M., Lupo, L., Schiraldi, O. and Antonaci, S. (2002) Clinical role of MMP-2/TIMP-2 imbalance in hepatocellular carcinoma. Int. J. Cancer 97, 425-431. https://doi.org/10.1002/ijc.1635
  59. Giri, R., Selvaraj, S., Miller, C. A., Hofman, F., Yan, S. D., Stern, D., Zlokovic, B. V. and Kalra, V. K. (2002) Effect of endothelial cell polarity on beta-amyloid-induced migration of monocytes across normal and AD endothelium. Am. J. Physiol. Cell Physiol. 283, 895- 904. https://doi.org/10.1152/ajpcell.00293.2001
  60. Gonzalez, J., Kumar, A. J., Conrad, C. A. and Levin, V. A. (2007) Effect of bevacizumab on radiation necrosis of the brain. Int. J. Radiat. Oncol. Biol. Phys. 67, 323-326. https://doi.org/10.1016/j.ijrobp.2006.10.010
  61. Graham, C. A. and Cloughesy, T. F. (2004) Brain tumor treatment: chemotherapy and other new developments. Semin. Oncol. Nurs. 20, 260-272. https://doi.org/10.1016/j.soncn.2004.07.006
  62. Groothuis, D. R., Wright, D. C. and Ostertag, C. B. (1987) The effect of $^{125}I$ interstitial radiotherapy on blood-brain barrier function in normal canine brain. J. Neurosurg. 67, 895-902. https://doi.org/10.3171/jns.1987.67.6.0895
  63. Grosch, S. and Kaina, B. (1999) Transcriptional activation of apurinic/ apyrimidinic endonuclease (Ape, Ref-1) by oxidative stress requires CREB. Biochem. Biophys. Res. Commun. 261, 859-863. https://doi.org/10.1006/bbrc.1999.1125
  64. Hanahan, D. (1997) Signaling vascular morphogenesis and maintenance. Science 277, 48-50. https://doi.org/10.1126/science.277.5322.48
  65. Hayes, A. J., Huang, W. Q., Mallah, J., Yang, D., Lippman, M. E. and Li, L. Y. (1999) Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc. Res. 58, 224-237. https://doi.org/10.1006/mvre.1999.2179
  66. Hegi, M. E., Diserens, A. C., Gorlia, T., Hamou, M. F., de Tribolet, N., Weller, M., Kros, J. M., Hainfellner, J. A., Mason, W., Mariani, L., Bromberg, J. E., Hau, P., Mirimanoff, R. O., Cairncross, J. G., Janzer, R. C. and Stupp, R. (2005) MGMT gene silencing and benefi t from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997- 1003. https://doi.org/10.1056/NEJMoa043331
  67. Hess, K. R. (1999) Extent of resection as a prognostic variable in the treatment of gliomas. J. Neurooncol. 42, 227-231. https://doi.org/10.1023/A:1006118018770
  68. Hong, J. H., Chiang, C. S., Campbell, I. L., Sun, J. R., Withers, H. R. and McBride, W. H. (1995) Induction of acute phase gene expression by brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 33, 619-626. https://doi.org/10.1016/0360-3016(95)00279-8
  69. Hovdenak, N., Wang, J., Sung, C. C., Kelly, T., Fajardo, L. F. and Hauer- Jensen, M. (2002) Clinical signifi cance of increased gelatinolytic activity in the rectal mucosa during external beam radiation therapy of prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 53, 919-927. https://doi.org/10.1016/S0360-3016(02)02808-0
  70. Jenrow, K. A., Brown, S. L., Liu, J., Kolozsvary, A., Lapanowski, K. and Kim. J. H. (2010) Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus. Radiat. Oncol. 5, 6. https://doi.org/10.1186/1748-717X-5-6
  71. Jenrow, K. A., Liu, J., Brown, S. L., Kolozsvary, A., Lapanowski, K. and Kim, J. H. (2011) Combined atorvastatin and ramipril mitigate radiation-induced impairment of dentate gyrus neurogenesis. J. Neurooncol. 101, 449-456. https://doi.org/10.1007/s11060-010-0282-x
  72. Johannesen, T. B., Lien, H. H., Hole, K. H. and Lote, K. (2003) Radiological and clinical assessment of long-term brain tumour survivors after radiotherapy. Radiother. Oncol. 69, 169-176. https://doi.org/10.1016/S0167-8140(03)00192-0
  73. Kantor, G., Laprie, A., Huchet, A., Loiseau, H., Dejean, C. and Mazeron, J. J. (2008) Radiation therapy for glial tumors: technical aspects and clinical indications. Cancer Radiother. 12, 687-694. https://doi.org/10.1016/j.canrad.2008.09.004
  74. Keyeux, A., Brucher, J. M., Ochrymowicz-Bemelmans, D. and Charlier, A. A. (1997) Late effects of X irradiation on regulation of cerebral blood flow after whole-brain exposure in rats. Radiat. Res. 147, 621-630. https://doi.org/10.2307/3579629
  75. Khuntia, D., Brown, P., Li, J. and Mehta, M. P. (2006) Whole-brain radiotherapy in the management of brain metastasis. J. Clin. Oncol. 24, 1295-1304. https://doi.org/10.1200/JCO.2005.04.6185
  76. Kim, J. H., Brown, S. L., Jenrow, K. A. and Ryu, S. (2008) Mechanisms of radiation-induced brain toxicity and implications for future clinical trials. J. Neurooncol. 87, 279-286. https://doi.org/10.1007/s11060-008-9520-x
  77. Kim, J. H., Brown, S. L., Kolozsvary, A., Jenrow, K. A., Ryu, S., Rosenblum, M. L. and Carretero, O. A. (2004) Modifi cation of radiation injury by ramipril, inhibitor of angiotensin-converting enzyme, on optic neuropathy in the rat. Radiat. Res. 161, 137-142. https://doi.org/10.1667/RR3124
  78. Kim, S. H., Lim, D. J., Chung, Y. G., Cho, T. H., Lim, S. J., Kim, W. J. and Suh, J. K. (2002) Expression of TNF-alpha and TGF-beta 1 in the rat brain after a single high-dose irradiation. J. Korean Med. Sci. 17, 242-248. https://doi.org/10.3346/jkms.2002.17.2.242
  79. Kim, Y. S. and Joh, T. H. (2012) Matrix metalloproteinases, new insights into the understanding of neurodegenerative disorders. Biomol. Ther. 20, 133-143. https://doi.org/10.4062/biomolther.2012.20.2.133
  80. Koblizek, T. I., Weiss, C., Yancopoulos, G. D., Deutsch, U. and Risau, W. (1998) Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr. Biol. 8, 529-532. https://doi.org/10.1016/S0960-9822(98)70205-2
  81. Koo, Y. E., Reddy, G. R., Bhojani, M., Schneider, R., Philbert, M. A., Rehemtulla, A., Ross, B. D. and Kopelman, R. (2006) Brain cancer diagnosis and therapy with nanoplatforms. Adv. Drug Deliv. Rev. 58, 1556-1577. https://doi.org/10.1016/j.addr.2006.09.012
  82. Krishnamurthy, P., Peterson, J. T., Subramanian, V., Singh, M. and Singh, K. (2009) Inhibition of matrix metalloproteinases improves left ventricular function in mice lacking osteopontin after myocardial infarction. Mol. Cell Biochem. 322, 53-62. https://doi.org/10.1007/s11010-008-9939-6
  83. Kyrkanides, S., Moore, A. H., Olschowka, J. A., Daeschner, J. C., Williams, J. P., Hansen, J. T. and Kerry O'Banion, M. (2002) Cyclooxygenase- 2 modulates brain infl ammation-related gene expression in central nervous system radiation injury. Brain Res. Mol. Brain Res. 104, 159-169. https://doi.org/10.1016/S0169-328X(02)00353-4
  84. Lakshminarayanan, V., Drab-Weiss, E. A. and Roebuck, K. A. (1998) H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells. J. Biol. Chem. 273, 32670-32678. https://doi.org/10.1074/jbc.273.49.32670
  85. Lamproglou, I., Chen, Q. M., Boisserie, G., Mazeron, J. J., Poisson, M., Baillet, F., Le Poncin, M. and Delattre. J. Y. (1995) Radiation induced cognitive dysfunction: an experimental model in the old rat. Int. J. Radiat. Oncol. Biol. Phys. 31, 65-70. https://doi.org/10.1016/0360-3016(94)00332-F
  86. Lee, W. H., Cho, H. J., Sonntag, W. E. and Lee, Y. W. (2011) Radiation attenuates physiological angiogenesis by differential expression of VEGF, Ang-1, tie-2 and Ang-2 in rat brain. Radiat. Res. 176, 753- 760. https://doi.org/10.1667/RR2647.1
  87. Lee, W. H., Sonntag, W. E. and Lee, Y. W. (2010a) Aging attenuates radiation-induced expression of pro-infl ammatory mediators in rat brain. Neurosci. Lett. 476, 89-93. https://doi.org/10.1016/j.neulet.2010.04.009
  88. Lee, W. H., Sonntag, W. E., Mitschelen, M., Yan, H. and Lee, Y. W. (2010b) Irradiation induces regionally specifi c alterations in proinfl ammatory environments in rat brain. Int. J. Radiat. Biol. 86, 132- 144. https://doi.org/10.3109/09553000903419346
  89. Lee, W. H., Warrington, J. P., Sonntag, W. E. and Lee, Y. W. (2012) Irradiation alters MMP-2/TIMP-2 system and collagen type IV degradation in brain. Int. J. Radiat. Oncol. Biol. Phys. 82, 1559-1566. https://doi.org/10.1016/j.ijrobp.2010.12.032
  90. Lee, Y. W., Hennig, B., Fiala, M., Kim, K. S. and Toborek, M. (2001a) Cocaine activates redox-regulated transcription factors and induces TNF-alpha expression in human brain endothelial cells. Brain Res. 920, 125-133. https://doi.org/10.1016/S0006-8993(01)03047-5
  91. Lee, Y. W., Hennig, B. and Toborek, M. (2003) Redox-regulated mechanisms of IL-4-induced MCP-1 expression in human vascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 284, H185-192. https://doi.org/10.1152/ajpheart.00524.2002
  92. Lee, Y. W., Hennig, B., Yao, J. and Toborek, M. (2001b) Methamphetamine induces AP-1 and NF-kappaB binding and transactivation in human brain endothelial cells. J. Neurosci. Res. 66, 583-591. https://doi.org/10.1002/jnr.1248
  93. Lee, Y. W., Kuhn, H., Hennig, B., Neish, A. S. and Toborek, M. (2001c) IL-4-induced oxidative stress upregulates VCAM-1 gene expression in human endothelial cells. J. Mol. Cell Cardiol. 33, 83-94. https://doi.org/10.1006/jmcc.2000.1278
  94. Lee, Y. W., Park, H. J., Hennig, B. and Toborek, M. (2001d) Linoleic acid induces MCP-1 gene expression in human microvascular endothelial cells through an oxidative mechanism. J. Nutr. Biochem. 12, 648-654. https://doi.org/10.1016/S0955-2863(01)00186-3
  95. Limoli, C. L., Giedzinski, E., Rola, R., Otsuka, S., Palmer, T. D. and Fike, J. R. (2004) Radiation response of neural precursor cells: linking cellular sensitivity to cell cycle checkpoints, apoptosis and oxidative stress. Radiat. Res. 161, 17-27. https://doi.org/10.1667/RR3112
  96. Liu, B. and Hong, J. S. (2003) Role of microglia in infl ammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther. 304, 1-7. https://doi.org/10.1124/jpet.102.035048
  97. Liu, J. L., Tian, D. S., Li, Z. W., Qu, W. S., Zhan, Y., Xie, M. J., Yu, Z. Y., Wang, W. and Wu, G. (2010a) Tamoxifen alleviates irradiation-induced brain injury by attenuating microglial infl ammatory response in vitro and in vivo. Brain Res. 1316, 101-111. https://doi.org/10.1016/j.brainres.2009.12.055
  98. Liu, Y., Xiao, S., Liu, J., Zhou, H., Liu, Z., Xin, Y. and Suo, W. Z. (2010b) An experimental study of acute radiation-induced cognitive dysfunction in a young rat model. AJNR. Am. J. Neuroradiol. 31, 383- 387. https://doi.org/10.3174/ajnr.A1801
  99. Ljubimova, N. V., Levitman, M. K., Plotnikova, E. D. and Eidus, LKh. (1991) Endothelial cell population dynamics in rat brain after local irradiation. Br. J. Radiol. 64, 934-940. https://doi.org/10.1259/0007-1285-64-766-934
  100. Lukes, A., Mun-Bryce, S., Lukes, M. and Rosenberg, G. A. (1999) Extracellular matrix degradation by metalloproteinases and central nervous system diseases. Mol. Neurobiol. 19, 267-284. https://doi.org/10.1007/BF02821717
  101. Lyubimova, N. and Hopewell, J. W. (2004) Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injury. Br. J. Radiol. 77, 488-492. https://doi.org/10.1259/bjr/15169876
  102. Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., Compton, D., McClain, J., Aldrich, T. H., Papadopoulos, N., Daly, T. J., Davis, S., Sato, T. N. and Yancopoulos, G. D. (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55-60. https://doi.org/10.1126/science.277.5322.55
  103. Manda, K., Ueno, M., Moritake, T. and Anzai, K. (2007) Radiationinduced cognitive dysfunction and cerebellar oxidative stress in mice: protective effect of alpha-lipoic acid. Behav. Brain Res. 177, 7-14. https://doi.org/10.1016/j.bbr.2006.11.013
  104. Mandriota, S. J. and Pepper, M. S. (1998) Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ. Res. 83, 852-859. https://doi.org/10.1161/01.RES.83.8.852
  105. McGeer, P. L. and McGeer, E. G. (1995) The infl ammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Brain Res. Rev. 21, 195- 218. https://doi.org/10.1016/0165-0173(95)00011-9
  106. McGeer, P. L., Yasojima, K. and McGeer, E. G. (2001) Infl ammation in Parkinson's disease. Adv. Neurol. 86, 83-89.
  107. Miller, J. W., Adamis, A. P., Shima, D. T., D'Amore, P. A., Moulton, R. S., O'Reilly, M. S., Folkman, J., Dvorak, H. F., Brown, L. F. and Berse, B., et al. (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am. J. Pathol. 145, 574-584.
  108. Monje, M. L., Toda, H. and Palmer, T. D. (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760- 1765. https://doi.org/10.1126/science.1088417
  109. Moore, A. H., Olschowka, J. A., Williams, J. P., Okunieff, P. and O'Banion, M. K. (2005) Regulation of prostaglandin E2 synthesis after brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 62, 267-272. https://doi.org/10.1016/j.ijrobp.2005.01.035
  110. Moulder, J. E. and Cohen, E. P. (2007) Future strategies for mitigation and treatment of chronic radiation-induced normal tissue injury. Semin. Radiat. Oncol. 17, 141-148. https://doi.org/10.1016/j.semradonc.2006.11.010
  111. Mun-Bryce, S. and Rosenberg, G. A. (1998) Matrix metalloproteinases in cerebrovascular disease. J. Cereb. Blood Flow. Metab. 18, 1163- 1172. https://doi.org/10.1097/00004647-199811000-00001
  112. Mut, M. (2012) Surgical treatment of brain metastasis: a review. Clin. Neurol. Neurosurg. 114, 1-8. https://doi.org/10.1016/j.clineuro.2011.10.013
  113. National Brain Tumor Society. (2012) Brain Tumor Quick Facts. http:// www.braintumor.org/news/press-kit/brain-tumor-facts.html.
  114. New, P. (2001) Radiation injury to the nervous system. Curr. Opin. Neurol. 14, 725-734. https://doi.org/10.1097/00019052-200112000-00008
  115. Nguyen, V., Gaber, M. W., Sontag, M. R. and Kiani, M. F. (2000) Late effects of ionizing radiation on the microvascular networks in normal tissue. Radiat. Res. 154, 531-536. https://doi.org/10.1667/0033-7587(2000)154[0531:LEOIRO]2.0.CO;2
  116. Nirmala, C., Jasti, S. L., Sawaya, R., Kyritsis, A. P., Konduri, S. D., Ali- Osman, F., Rao, J. S. and Mohanam, S. (2000) Effects of radiation on the levels of MMP-2, MMP-9 and TIMP-1 during morphogenic glial-endothelial cell interactions. Int. J. Cancer 88, 766-771. https://doi.org/10.1002/1097-0215(20001201)88:5<766::AID-IJC13>3.0.CO;2-Y
  117. Nordal, R. A. and Wong, C. S. (2005) Molecular targets in radiationinduced blood-brain barrier disruption. Int. J. Radiat. Oncol. Biol. Phys. 62, 279-287. https://doi.org/10.1016/j.ijrobp.2005.01.039
  118. Olschowka, J. A., Kyrkanides, S., Harvey, B. K., O'Banion, M. K., Williams, J. P., Rubin, P. and Hansen, J. T. (1997) ICAM-1 induction in the mouse CNS following irradiation. Brain Behav. Immun. 11, 273-285. https://doi.org/10.1006/brbi.1997.0506
  119. Owoeye, O., Farombi, E. O. and Onwuka. S. K. (2011) Gross morphometric reduction of rats' cerebellum by gamma irradiation was mitigated by pretreatment with Vernonia amygdalina leaf extract. Rom. J. Morphol. Embryol. 52, 81-88.
  120. Park, H. J., Lee, Y. W., Hennig, B. and Toborek, M. (2001) Linoleic acid-induced VCAM-1 expression in human microvascular endothelial cells is mediated by the NF-kappa B-dependent pathway. Nutr. Cancer 41, 126-134. https://doi.org/10.1080/01635581.2001.9680623
  121. Paulsson, M. (1992) Basement membrane proteins: structure, assembly, and cellular interactions. Crit. Rev. Biochem. Mol. Biol. 27, 93-127. https://doi.org/10.3109/10409239209082560
  122. Pena, L. A., Fuks, Z. and Kolesnick, R. N. (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fi broblast growth factor and sphingomyelinase defi ciency. Cancer Res. 60, 321-327.
  123. Peschel, R. E., Wilson, L., Haffty, B., Papadopoulos, D., Rosenzweig, K. and Feltes, M. (1993) The effect of advanced age on the effi cacy of radiation therapy for early breast cancer, local prostate cancer and grade III-IV gliomas. Int. J. Radiat. Oncol. Biol. Phys. 26, 539-544. https://doi.org/10.1016/0360-3016(93)90973-Y
  124. Peters, K. G., Kontos, C. D., Lin, P. C., Wong, A. L., Rao, P., Huang, L., Dewhirst, M. W. and Sankar, S. (2004) Functional signifi cance of Tie2 signaling in the adult vasculature. Recent. Prog. Horm. Res. 59, 51-71. https://doi.org/10.1210/rp.59.1.51
  125. Planas, A. M., Sole, S. and Justicia, C. (2001) Expression and activation of matrix metalloproteinase-2 and -9 in rat brain after transient focal cerebral ischemia. Neurobiol. Dis. 8, 834-846. https://doi.org/10.1006/nbdi.2001.0435
  126. Plate, K. H. (1999) Mechanisms of angiogenesis in the brain. J. Neuropathol. Exp. Neurol. 58, 313-320. https://doi.org/10.1097/00005072-199904000-00001
  127. Plotnikova, E. D., Levitman, M. K., Shaposhnikova, V. V., Koshevoy, J. V. and Eidus, L. K. (1984) Protection of microcirculation in rat brain against late radiation injury by gammaphos. Int. J. Radiat. Oncol. Biol. Phys. 10, 365-368. https://doi.org/10.1016/0360-3016(84)90055-5
  128. Plotnikova, E. D., Levitman, M. K., Shaposhnikova, V. V., Koshevoj, J. V. and Eidus, L. K. (1988) Protection of microvasculature in rat brain against late radiation injury by gammaphos. Int. J. Radiat. Oncol. Biol. Phys. 15, 1197-1201. https://doi.org/10.1016/0360-3016(88)90204-0
  129. Quik, E. H., Valk, G. D., Drent, M. L., Stalpers, L. J., Kenemans, J. L., Koppeschaar, H. P. and Dam, P. S. (2012) Reduced growth hormone secretion after cranial irradiation contributes to neurocognitive dysfunction. Growth Horm. IGF. Res. 22, 42-47. https://doi.org/10.1016/j.ghir.2011.12.007
  130. Raju, U., Gumin, G. J. and Tofi lon, P. J. (2000) Radiation-induced transcription factor activation in the rat cerebral cortex. Int. J. Radiat. Biol. 76, 1045-1053. https://doi.org/10.1080/09553000050111514
  131. Ramanan, S., Kooshki, M., Zhao, W., Hsu, F. C., Riddle, D. R. and Robbins, M. E. (2009) The PPARalpha agonist fenofi brate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 75, 870-877. https://doi.org/10.1016/j.ijrobp.2009.06.059
  132. Ramanan, S., Zhao, W., Riddle, D. R. and Robbins, M. E. (2010) Role of PPARs in Radiation-Induced Brain Injury. PPAR. Res. 2010, 234975.
  133. Rampling, R., James, A. and Papanastassiou, V. (2004) The present and future management of malignant brain tumours: surgery, radiotherapy, chemotherapy. J. Neurol. Neurosurg. Psychiatry 75 Suppl 2, 24-30.
  134. Ribatti, D. (2005) The crucial role of vascular permeability factor/vascular endothelial growth factor in angiogenesis: a historical review. Br. J. Haematol. 128, 303-309. https://doi.org/10.1111/j.1365-2141.2004.05291.x
  135. Rola, R., Raber, J., Rizk, A., Otsuka, S., VandenBerg, S. R., Morhardt, D. R. and Fike, J. R. (2004) Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive defi cits in young mice. Exp. Neurol. 188, 316-330. https://doi.org/10.1016/j.expneurol.2004.05.005
  136. Roman, D. D. and Sperduto, P. W. (1995) Neuropsychological effects of cranial radiation: current knowledge and future directions. Int. J. Radiat. Oncol. Biol. Phys. 31, 983-998. https://doi.org/10.1016/0360-3016(94)00550-8
  137. Romanic, A. M., White, R. F., Arleth, A. J., Ohlstein, E. H. and Barone, F. C. (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase- 9 reduces infarct size. Stroke 29, 1020-1030. https://doi.org/10.1161/01.STR.29.5.1020
  138. Rosenberg, G. A., Estrada, E., Kelley, R. O. and Kornfeld, M. (1993) Bacterial collagenase disrupts extracellular matrix and opens blood-brain barrier in rat. Neurosci. Lett. 160, 117-119. https://doi.org/10.1016/0304-3940(93)90927-D
  139. Rosenblum, M. L., Gerosa, M., Dougherty, D. V., Reese, C., Barger, G. R., Davis, R. L., Levin, V. A. and Wilson, C. B. (1982) Age-related chemosensitivity of stem cells from human malignant brain tumours. Lancet 1, 885-887.
  140. Roth, N. M., Sontag, M. R. and Kiani, M. F. (1999) Early effects of ionizing radiation on the microvascular networks in normal tissue. Radiat. Res. 151, 270-277. https://doi.org/10.2307/3579938
  141. Rubin, L. L. and Staddon, J. M. (1999) The cell biology of the bloodbrain barrier. Annu. Rev. Neurosci. 22, 11-28. https://doi.org/10.1146/annurev.neuro.22.1.11
  142. Rubin, P., Gash, D. M., Hansen, J. T., Nelson, D. F. and Williams, J. P. (1994) Disruption of the blood-brain barrier as the primary effect of CNS irradiation. Radiother. Oncol. 31, 51-60. https://doi.org/10.1016/0167-8140(94)90413-8
  143. Rutka, J. T., Apodaca, G., Stern, R. and Rosenblum, M. (1988) The extracellular matrix of the central and peripheral nervous systems: structure and function. J. Neurosurg. 69, 155-170. https://doi.org/10.3171/jns.1988.69.2.0155
  144. Ryu, S., Kolozsvary, A., Jenrow, K. A., Brown. S. L. and Kim, J. H. (2007) Mitigation of radiation-induced optic neuropathy in rats by ACE inhibitor ramipril: importance of ramipril dose and treatment time. J. Neurooncol. 82, 119-124. https://doi.org/10.1007/s11060-006-9256-4
  145. Sara, M., Claudio, F., Marco, L., Roberto, L., Elena, M., Micaela, M., Lucia, P., Elena, B., Marina, S. and Michele, R. (2011) Time course of hypothalamic-pituitary defi ciency in adults receiving cranial radiotherapy for primary extrasellar brain tumors. Radiother. Oncol. 99, 23-28. https://doi.org/10.1016/j.radonc.2011.02.015
  146. Sato, T. N., Tozawa, Y., Deutsch, U., Wolburg-Buchholz, K., Fujiwara, Y., Gendron-Maguire, M., Gridley, T., Wolburg, H., Risau, W. and Qin, Y. (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376, 70-74. https://doi.org/10.1038/376070a0
  147. Sawaya, R., Tofi lon, P. J., Mohanam, S., Ali-Osman, F., Liotta, L. A., Stetler-Stevenson, W. G. and Rao, J. S. (1994) Induction of tissuetype plasminogen activator and 72-kDa type-IV collagenase by ionizing radiation in rat astrocytes. Int. J. Cancer 56, 214-218. https://doi.org/10.1002/ijc.2910560212
  148. Schindler, M. K., Forbes, M. E., Robbins, M. E. and Riddle. D. R. (2008) Aging-dependent changes in the radiation response of the adult rat brain. Int. J. Radiat. Oncol. Biol. Phys. 70, 826-834. https://doi.org/10.1016/j.ijrobp.2007.10.054
  149. Schnegg, C. I., Kooshki, M., Hsu, F. C., Sui, G. and Robbins, M. E. (2012) $PPAR{\delta}$ prevents radiation-induced proinfl ammatory responses in microglia via transrepression of NF-${\kappa}B$ and inhibition of the $PKC{\alpha}$/MEK1/2/ERK1/2/AP-1 pathway. Free Radic. Biol. Med. 52, 1734-1743. https://doi.org/10.1016/j.freeradbiomed.2012.02.032
  150. Schultheiss, T. E. and Stephens, L. C. (1992) Invited review: permanent radiation myelopathy. Br. J. Radiol. 65, 737-753. https://doi.org/10.1259/0007-1285-65-777-737
  151. Schulz, J. B. and Falkenburger, B. H. (2004) Neuronal pathology in Parkinson's disease. Cell Tissue Res. 318, 135-147. https://doi.org/10.1007/s00441-004-0954-y
  152. Sellner, J. and Leib, S. L. (2006) In bacterial meningitis cortical brain damage is associated with changes in parenchymal MMP-9/TIMP- 1 ratio and increased collagen type IV degradation. Neurobiol. Dis. 21, 647-656. https://doi.org/10.1016/j.nbd.2005.09.007
  153. Sellner, J., Simon, F., Meyding-Lamade, U. and Leib, S. L. (2006) Herpes- simplex virus encephalitis is characterized by an early MMP-9 increase and collagen type IV degradation. Brain Res. 1125, 155- 162. https://doi.org/10.1016/j.brainres.2006.09.093
  154. Sepah, S. C. and Bower, J. E. (2009) Positive affect and infl ammation during radiation treatment for breast and prostate cancer. Brain Behav. Immun. 23, 1068-1072. https://doi.org/10.1016/j.bbi.2009.06.149
  155. Sheline, G. E., Wara, W. M. and Smith, V. (1980) Therapeutic irradiation and brain injury. Int. J. Radiat. Oncol. Biol. Phys. 6, 1215-1228. https://doi.org/10.1016/0360-3016(80)90175-3
  156. Shi, L., Adams, M. M., Long, A., Carter, C. C., Bennett, C., Sonntag, W. E., Nicolle, M. M., Robbins, M., D'Agostino, R. and Brunso- Bechtold, J. K. (2006) Spatial learning and memory defi cits after whole-brain irradiation are associated with changes in NMDA receptor subunits in the hippocampus. Radiat. Res. 166, 892-899. https://doi.org/10.1667/RR0588.1
  157. Shirazi, A., Ghobadi, G. and Ghazi-Khansari, M. (2007) A radiobiological review on melatonin: a novel radioprotector. J. Radiat. Res. 48, 263-272. https://doi.org/10.1269/jrr.06070
  158. Simon, A. R., Rai, U., Fanburg, B. L. and Cochran, B. H. (1998) Activation of the JAK-STAT pathway by reactive oxygen species. Am. J. Physiol. 275, 1640-1652. https://doi.org/10.1152/ajpcell.1998.275.6.C1640
  159. Simpson, J. R., Horton, J., Scott, C., Curran, W. J., Rubin, P., Fischbach, J., Isaacson, S., Rotman, M., Asbell, S. O. and Nelson, J. S. (1993) Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int. J. Radiat. Oncol. Biol. Phys. 26, 239-244. https://doi.org/10.1016/0360-3016(93)90203-8
  160. Staddon, J. M., Herrenknecht, K., Schulze, C., Smales, C. and Rubin, L. L. (1995) Signal transduction at the blood-brain barrier. Biochem. Soc. Trans. 23, 475-479. https://doi.org/10.1042/bst0230475
  161. Stone, H. B., Coleman, C. N., Anscher, M. S. and McBride. W. H. (2003) Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 4, 529-536. https://doi.org/10.1016/S1470-2045(03)01191-4
  162. Stone, H. B., Moulder, J. E., Coleman, C. N., Ang, K. K., Anscher, M. S., Barcellos-Hoff, M. H., Dynan, W. S., Fike, J. R., Grdina, D. J., Greenberger, J. S., Hauer-Jensen, M., Hill, R. P., Kolesnick, R. N., Macvittie, T. J., Marks, C., McBride, W. H., Metting, N., Pellmar, T., Purucker, M., Robbins, M. E., Schiestl, R. H., Seed, T. M., Tomaszewski, J. E., Travis, E. L., Wallner, P. E., Wolpert, M. and Zaharevitz, D. (2004) Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop, December 3-4, 2003. Radiat. Res. 162, 711- 728. https://doi.org/10.1667/RR3276
  163. Strup-Perrot, C., Vozenin-Brotons, M. C., Vandamme, M., Linard, C. and Mathé. D. (2005) Expression of matrix metalloproteinases and tissue inhibitor metalloproteinases increases in X-irradiated rat ileum despite the disappearance of CD8a T cells. World J. Gastroenterol. 11, 6312-6321. https://doi.org/10.3748/wjg.v11.i40.6312
  164. Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., Belanger, K., Brandes, A. A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R. C., Ludwin, S. K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J. G., Eisenhauer, E. and Mirimanoff, R. O; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987-996. https://doi.org/10.1056/NEJMoa043330
  165. Suo, Z., Tan, J., Placzek, A., Crawford, F., Fang, C. and Mullan, M. (1998) Alzheimer's beta-amyloid peptides induce infl ammatory cascade in human vascular cells: the roles of cytokines and CD40. Brain Res. 807, 110-117. https://doi.org/10.1016/S0006-8993(98)00780-X
  166. Tammela, T., Enholm, B., Alitalo, K. and Paavonen, K. (2005) The biology of vascular endothelial growth factors. Cardiovasc. Res. 65, 550-563. https://doi.org/10.1016/j.cardiores.2004.12.002
  167. Teismann, P., Tieu, K., Choi, D. K., Wu, D. C., Naini, A., Hunot, S., Vila, M., Jackson-Lewis, V. and Przedborski, S. (2003) Cyclooxygenase- 2 is instrumental in Parkinson's disease neurodegeneration. Proc. Natl. Acad. Sci. USA 100, 5473-5478. https://doi.org/10.1073/pnas.0837397100
  168. Tilling, T., Engelbertz, C., Decker, S., Korte, D., Hüwel, S. and Galla, H. J. (2002) Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures. Cell Tissue Res. 310, 19-29. https://doi.org/10.1007/s00441-002-0604-1
  169. Tilling, T., Korte, D., Hoheisel, D. and Galla, H. J. (1998) Basement membrane proteins infl uence brain capillary endothelial barrier function in vitro. J. Neurochem. 71, 1151-1157.
  170. Toborek, M., Lee, Y. W., Flora, G., Pu, H., András, I. E., Wylegala, E., Hennig, B. and Nath, A. (2005) Mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell Mol. Neurobiol. 25, 181-199. https://doi.org/10.1007/s10571-004-1383-x
  171. Tofilon, P. J. and Fike, J. R. (2000) The radioresponse of the central nervous system: a dynamic process. Radiat. Res. 153, 357-370. https://doi.org/10.1667/0033-7587(2000)153[0357:TROTCN]2.0.CO;2
  172. Tsao, M. N., Lloyd, N. S., Wong, R. K., Rakovitch, E., Chow, E. and Laperriere, N; Supportive Care Guidelines Group of Cancer Care Ontario's Program in Evidence-based Care. (2005) Radiotherapeutic management of brain metastases: a systematic review and meta-analysis. Cancer Treat. Rev. 31, 256-273. https://doi.org/10.1016/j.ctrv.2005.04.007
  173. Undeger, U., Giray, B., Zorlu, A. F., Oge, K. and Baçaran, N. (2004) Protective effects of melatonin on the ionizing radiation induced DNA damage in the rat brain. Exp. Toxicol. Pathol. 55, 379-384. https://doi.org/10.1078/0940-2993-00332
  174. Verhasselt, V., Goldman, M. and Willems, F. (1998) Oxidative stress up-regulates IL-8 and TNF-alpha synthesis by human dendritic cells. Eur. J. Immunol. 28, 3886-3890. https://doi.org/10.1002/(SICI)1521-4141(199811)28:11<3886::AID-IMMU3886>3.0.CO;2-M
  175. Villa, S., Vinolas, N., Verger, E., Yaya, R., Martinez, A., Gil, M., Moreno, V., Caral, L. and Graus, F. (1998) Efficacy of radiotherapy for malignant gliomas in elderly patients. Int. J. Radiat. Oncol. Biol. Phys. 42, 977-980. https://doi.org/10.1016/S0360-3016(98)00356-3
  176. Visse, R. and Nagase, H. (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827-839. https://doi.org/10.1161/01.RES.0000070112.80711.3D
  177. Vorotnikova, E., Rosenthal, R. A., Tries, M., Doctrow, S. R. and Braunhut. S. J. (2010) Novel synthetic SOD/catalase mimetics can mitigate capillary endothelial cell apoptosis caused by ionizing radiation. Radiat. Res. 173, 748-759. https://doi.org/10.1667/RR1948.1
  178. Walker, M. D., Alexander, E. Jr., Hunt, W. E., MacCarty, C. S., Mahaley, M. S. Jr., Mealey, J. Jr., Norrell, H. A., Owens, G., Ransohoff, J., Wilson, C. B., Gehan, E. A. and Strike, T. A. (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J. Neurosurg. 49, 333-343. https://doi.org/10.3171/jns.1978.49.3.0333
  179. Walker, M. D., Strike, T. A. and Sheline, G. E. (1979) An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int. J. Radiat. Oncol. Biol. Phys. 5, 1725-1731. https://doi.org/10.1016/0360-3016(79)90553-4
  180. Wang, Z., Juttermann, R. and Soloway, P. D. (2000) TIMP-2 is required for effi cient activation of proMMP-2 in vivo. J. Biol. Chem. 275, 26411-26415. https://doi.org/10.1074/jbc.M001270200
  181. Warrington, J. P., Csiszar, A., Johnson, D. A., Herman, T. S., Ahmad, S., Lee, Y. W. and Sonntag, W. E. (2011) Cerebral microvascular rarefaction induced by whole brain radiation is reversible by systemic hypoxia in mice. Am. J. Physiol. Heart Circ. Physiol. 300, H736-744. https://doi.org/10.1152/ajpheart.01024.2010
  182. Warrington, J. P., Csiszar, A., Mitschelen, M., Lee, Y. W. and Sonntag, W. E. (2012) Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia. PLoS. One. 7, e30444. https://doi.org/10.1371/journal.pone.0030444
  183. Wei, M., Li, H., Huang, H., Xu, D., Zhi, D., Liu, D. and Zhang, Y. (2012) Increased expression of EMMPRIN and VEGF in the rat brain after gamma irradiation. J. Korean Med. Sci. 27, 291-299. https://doi.org/10.3346/jkms.2012.27.3.291
  184. Welzel, G., Fleckenstein, K., Schaefer, J., Hermann, B., Kraus-Tiefenbacher, U., Mai, S. K. and Wenz, F. (2008) Memory function before and after whole brain radiotherapy in patients with and without brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 72, 1311-1318. https://doi.org/10.1016/j.ijrobp.2008.03.009
  185. Witzenbichler, B., Maisonpierre, P. C., Jones, P., Yancopoulos, G. D. and Isner, J. M. (1998) Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specifi c receptor tyrosine kinase Tie2. J. Biol. Chem. 273, 18514-185121. https://doi.org/10.1074/jbc.273.29.18514
  186. Wung, B. S., Cheng, J. J., Hsieh, H. J., Shyy, Y. J. and Wang, D. L. (1997) Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ. Res. 81, 1-7. https://doi.org/10.1161/01.RES.81.1.1
  187. Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J. and Holash, J. (2000) Vascular-specifi c growth factors and blood vessel formation. Nature 407, 242-248. https://doi.org/10.1038/35025215
  188. Yang, K., Liu, L., Zhang, T., Wu, G., Ruebe, C., Ruebe, C. and Hu, Y. (2006) TGF-betal transgenic mouse model of thoracic irradiation: modulation of MMP-2 and MMP-9 in the lung tissue. J. Huazhong Univ. Sci. Technolog. Med. Sci. 26, 301-304. https://doi.org/10.1007/BF02829557
  189. Yang, K., Palm, J., Konig, J., Seeland, U., Rosenkranz, S., Feiden, W., Rübe, C. and Rübe, C. E. (2007) Matrix-Metallo-Proteinases and their tissue inhibitors in radiation-induced lung injury. Int. J. Radiat. Biol. 83, 665-676. https://doi.org/10.1080/09553000701558977
  190. Yoneoka, Y., Satoh, M., Akiyama, K., Sano, K., Fujii, Y. and Tanaka, R. (1999) An experimental study of radiation-induced cognitive dysfunction in an adult rat model. Br. J. Radiol. 72, 1196-1201. https://doi.org/10.1259/bjr.72.864.10703477
  191. Zhao, W., Goswami, P. C. and Robbins, M. E. (2004) Radiation-induced up-regulation of Mmp2 involves increased mRNA stability, redox modulation, and MAPK activation. Radiat. Res. 161, 418- 429. https://doi.org/10.1667/3155
  192. Zhao, W., Payne, V., Tommasi, E., Diz, D. I., Hsu, F. C. and Robbins, M. E. (2007) Administration of the peroxisomal proliferator-activated receptor gamma agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment. Int. J. Radiat. Oncol. Biol. Phys. 67, 6-9. https://doi.org/10.1016/j.ijrobp.2006.09.036
  193. Zhou, H., Liu, Z., Liu, J., Wang, J., Zhou, D., Zhao, Z., Xiao, S., Tao, E. and Suo W. Z. (2011) Fractionated radiation-induced acute encephalopathy in a young rat model: cognitive dysfunction and histologic fi ndings. Am. J. Neuroradiol. 32, 1795-1800. https://doi.org/10.3174/ajnr.A2643

Cited by

  1. Shenqi Fuzheng Injection attenuates irradiation-induced brain injury in mice via inhibition of the NF-κB signaling pathway and microglial activation vol.36, pp.11, 2015, https://doi.org/10.1038/aps.2015.69
  2. Cancer-treatment-induced neurotoxicity—focus on newer treatments vol.13, pp.2, 2015, https://doi.org/10.1038/nrclinonc.2015.152
  3. The biology of cancer-related fatigue: a review of the literature vol.23, pp.8, 2015, https://doi.org/10.1007/s00520-015-2763-0
  4. Prophylactic Cranial Irradiation (PCI) versus Active MRI Surveillance for Small Cell Lung Cancer: The Case for Equipoise 2017, https://doi.org/10.1016/j.jtho.2017.08.016
  5. Ameliorative effect of black grape juice on systemic alterations and mandibular osteoradionecrosis induced by whole brain irradiation in rats vol.93, pp.2, 2017, https://doi.org/10.1080/09553002.2017.1231945
  6. Cerebromicrovascular dysfunction predicts cognitive decline and gait abnormalities in a mouse model of whole brain irradiation-induced accelerated brain senescence vol.39, pp.1, 2017, https://doi.org/10.1007/s11357-017-9964-z
  7. IRAK1/4-Targeted Anti-Inflammatory Action of Caffeic Acid vol.2013, 2013, https://doi.org/10.1155/2013/518183
  8. Kognitive Defizite nach Strahlentherapie von Hirntumoren 2017, https://doi.org/10.1007/s00115-017-0423-y
  9. Effects of ionizing radiation on the mammalian brain vol.770, 2016, https://doi.org/10.1016/j.mrrev.2016.08.003
  10. Radiation induces progenitor cell death, microglia activation, and blood-brain barrier damage in the juvenile rat cerebellum vol.7, 2017, https://doi.org/10.1038/srep46181
  11. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours vol.13, pp.1, 2016, https://doi.org/10.1038/nrneurol.2016.185
  12. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury vol.54, pp.2, 2017, https://doi.org/10.1007/s12035-015-9628-x
  13. Long-term effects of radiation therapy on white matter of the corpus callosum: a diffusion tensor imaging study in children 2017, https://doi.org/10.1007/s00247-017-3955-1
  14. Cognitive impairments following cranial irradiation can be mitigated by treatment with a tropomyosin receptor kinase B agonist vol.279, 2016, https://doi.org/10.1016/j.expneurol.2016.02.021
  15. The use of angiotensin II receptor antagonists to increase the efficacy of radiotherapy in cancer treatment vol.10, pp.15, 2014, https://doi.org/10.2217/fon.14.177
  16. Role of NADPH oxidase in radiation-induced pro-oxidative and pro-inflammatory pathways in mouse brain vol.93, pp.11, 2017, https://doi.org/10.1080/09553002.2017.1377360
  17. Strategies to Preserve Cognition in Patients With Brain Metastases: A Review vol.8, pp.2234-943X, 2018, https://doi.org/10.3389/fonc.2018.00415
  18. N-methyl-D-aspartate Receptor Mediates X-irradiation-induced Drebrin Decrease in Hippocampus vol.68, pp.2, 2018, https://doi.org/10.2974/kmj.68.111
  19. Identification of brain metastasis genes and therapeutic evaluation of histone deacetylase inhibitors in a clinically relevant model of breast cancer brain metastasis vol.11, pp.7, 2018, https://doi.org/10.1242/dmm.034850
  20. Cerebrospinal fluid markers of extracellular matrix remodelling, synaptic plasticity and neuroinflammation before and after cranial radiotherapy vol.284, pp.2, 2018, https://doi.org/10.1111/joim.12763
  21. Radiation resistance of normal human astrocytes: the role of non-homologous end joining DNA repair activity vol.60, pp.1, 2019, https://doi.org/10.1093/jrr/rry084
  22. Disorder in Pixel-Level Edge Directions on T1WI Is Associated with the Degree of Radiation Necrosis in Primary and Metastatic Brain Tumors: Preliminary Findings pp.1936-959X, 2019, https://doi.org/10.3174/ajnr.A5958
  23. Stem Cell Therapies for the Resolution of Radiation Injury to the Brain vol.3, pp.4, 2017, https://doi.org/10.1007/s40778-017-0105-5
  24. Sodium butyrate prevents radiation-induced cognitive impairment by restoring pCREB/BDNF expression vol.14, pp.9, 2019, https://doi.org/10.4103/1673-5374.255974
  25. Mania as a possible complication of immunotherapy vol.24, pp.1, 2020, https://doi.org/10.1002/pnp.555
  26. Extracellular Vesicle–Derived miR-124 Resolves Radiation-Induced Brain Injury vol.80, pp.19, 2020, https://doi.org/10.1158/0008-5472.can-20-1599
  27. Study protocol: watchful observation of patients with limited small cell lung cancer instead of the PCI—prospective, multi-center one-arm study vol.20, pp.None, 2012, https://doi.org/10.1186/s12885-020-06721-8
  28. Neurobehavioral effects of acute low-dose whole-body irradiation vol.62, pp.5, 2012, https://doi.org/10.1093/jrr/rrab026
  29. Cognitive sequelae of radiotherapy in primary brain tumors vol.26, pp.None, 2012, https://doi.org/10.1016/j.inat.2021.101305