References
- Abbott, N. J., Ronnback, L. and Hansson, E. (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41-53. https://doi.org/10.1038/nrn1824
- Abou-Seif, M. A., El-Naggar, M. M., El-Far, M., Ramadan, M. and Salah, N. (2003) Amelioration of radiation-induced oxidative stress and biochemical alteration by SOD model compounds in pre-treated gamma-irradiated rats. Clin. Chim. Acta. 337, 23-33. https://doi.org/10.1016/S0009-8981(03)00192-X
- Acharya, M. M., Christie, L. A., Lan, M. L., Donovan, P. J., Cotman, C. W., Fike, J. R. and Limoli, C. L. (2009) Rescue of radiation-induced cognitive impairment through cranial transplantation of human embryonic stem cells. Proc. Natl. Acad. Sci. USA 106, 19150-19155. https://doi.org/10.1073/pnas.0909293106
- Acharya, M. M., Christie, L. A., Lan, M. L., Giedzinski, E., Fike, J. R., Rosi, S. L. and Imoli, C. L. (2011) Human neural stem cell transplantation ameliorates radiation-induced cognitive dysfunction. Cancer Res. 71, 4834-4845. https://doi.org/10.1158/0008-5472.CAN-11-0027
- Acharya, M. M., Lan, M. L., Kan, V. H., Patel, N. H., Giedzinski, E., Tseng, B. P. and Limoli, C. L. (2010) Consequences of ionizing radiation-induced damage in human neural stem cells. Free Radic. Biol. Med. 49, 1846-1855. https://doi.org/10.1016/j.freeradbiomed.2010.08.021
- Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., Fiebich, B. L.,Finch, C. E., Frautschy, S., Griffi n, W. S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I. R., McGeer, P. L., O'Banion, M. K., Pachter, J., Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F. L., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G. and Wyss-Coray, T. (2000) Infl ammation and Alzheimer's disease. Neurobiol. Aging 21, 383-421. https://doi.org/10.1016/S0197-4580(00)00124-X
- Akiyama, K., Tanaka, R., Sato, M. and Takeda, N. (2001) Cognitive dysfunction and histological fi ndings in adult rats one year after whole brain irradiation. Neurol. Med. Chir (Tokyo). 41, 590-598. https://doi.org/10.2176/nmc.41.590
- Alavi, A., Hood, J. D., Frausto, R., Stupack, D. G. and Cheresh, D. A. (2003) Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301, 94-96. https://doi.org/10.1126/science.1082015
- American Brain Tumor Association. (2012) Brain Tumor Facts. http:// www.abta.org/news/brain-tumor-fact-sheets/
- Andersen, A. P. (1978) Postoperative irradiation of glioblastomas. Results in a randomized series. Acta. Radiol. Oncol. Radiat. Phys. Biol. 17, 475-484. https://doi.org/10.3109/02841867809128178
- Aoudjit, F., Masure, S., Opdenakker, G., Potworowski, E. F. and St- Pierre, Y. (1999) Gelatinase B (MMP-9), but not its inhibitor (TIMP- 1), dictates the growth rate of experimental thymic lymphoma. Int. J. Cancer 82, 743-747. https://doi.org/10.1002/(SICI)1097-0215(19990827)82:5<743::AID-IJC19>3.0.CO;2-6
- Araya, J., Maruyama, M., Sassa, K., Fujita, T., Hayashi, R., Matsui, S., Kashii, T., Yamashita, N., Sugiyama, E. and Kobayashi, M. (2001) Ionizing radiation enhances matrix metalloproteinase-2 production in human lung epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 280, L30-38. https://doi.org/10.1152/ajplung.2001.280.1.L30
- Baker, D. G. and Krochak, R. J. (1989) The response of the microvascular system to radiation: a review. Cancer Invest. 7, 287-294. https://doi.org/10.3109/07357908909039849
- Baluna, R. G., Eng, T. Y. and Thomas, C. R. (2006) Adhesion molecules in radiotherapy. Radiat. Res. 166, 819-831. https://doi.org/10.1667/RR0380.1
- Banerjee, S. and Bhat, M. A. (2007) Neuron-glial interactions in bloodbrain barrier formation. Annu. Rev. Neurosci. 30, 235-258. https://doi.org/10.1146/annurev.neuro.30.051606.094345
- Barlind, A., Karlsson, N., Björk-Eriksson, T., Isgaard, J. and Blomgren, K. (2010) Decreased cytogenesis in the granule cell layer of the hippocampus and impaired place learning after irradiation of the young mouse brain evaluated using the IntelliCage platform. Exp. Brain Res. 201, 781-787. https://doi.org/10.1007/s00221-009-2095-8
- Barnett, J. M., McCollum, G. W., Fowler, J. A., Duan, J. J., Kay, J. D., Liu, R. Q., Bingaman, D. P. and Penn, J. S. (2007) Pharmacologic and genetic manipulation of MMP-2 and -9 affects retinal neovascularization in rodent models of OIR. Invest. Ophthalmol. Vis. Sci. 48, 907-915. https://doi.org/10.1167/iovs.06-0082
- Behin, A. and Delattre, J. Y. (2004) Complications of radiation therapy on the brain and spinal cord. Semin. Neurol. 24, 405-417. https://doi.org/10.1055/s-2004-861535
- Bentzen, S. M. (2006) Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat. Rev. Cancer 6, 702-713. https://doi.org/10.1038/nrc1950
- Bernstein, M., Marotta, T., Stewart, P., Glen, J., Resch, L. and Henkelman, M. (1990) Brain damage from 125I brachytherapy evaluated by MR imaging, a blood-brain barrier tracer, and light and electron microscopy in a rat model. J. Neurosurg. 73, 585-593. https://doi.org/10.3171/jns.1990.73.4.0585
- Bouloumie, A., Marumo, T., Lafontan, M. and Busse, R. (1999) Leptin induces oxidative stress in human endothelial cells. FASEB J. 13, 1231-1238. https://doi.org/10.1096/fasebj.13.10.1231
- Breier, G., Albrecht, U., Sterrer, S. and Risau, W. (1992) Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114, 521-532.
- Brown, W. R., Blair, R. M., Moody, D. M., Thore, C. R., Ahmed, S., Robbins, M. E. and Wheeler, K. T. (2007) Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: a potential rat model of vascular dementia. J. Neurol. Sci. 257, 67-71. https://doi.org/10.1016/j.jns.2007.01.014
- Brown, W. R., Thore, C. R., Moody, D. M., Robbins, M. E. and Wheeler, K. T. (2005) Vascular damage after fractionated whole-brain irradiation in rats. Radiat. Res. 164, 662-668. https://doi.org/10.1667/RR3453.1
- Bucci, M. K., Bevan, A. and Roach, M. 3rd. (2005) Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA. Cancer J. Clin. 55, 117-134. https://doi.org/10.3322/canjclin.55.2.117
- Buckner, J. C., Brown, P. D., O'Neill, B. P., Meyer, F. B., Wetmore, C. J. and Uhm, J. H. (2007) Central nervous system tumors. Mayo. Clin. Proc. 82, 1271-1286. https://doi.org/10.4065/82.10.1271
- Calvo, W., Hopewell, J. W., Reinhold, H. S., van den Berg, A. P. and Yeung, T. K. (1987) Dose-dependent and time-dependent changes in the choroid plexus of the irradiated rat brain. Br. J. Radiol. 60, 1109-1117. https://doi.org/10.1259/0007-1285-60-719-1109
- Castro, M. G., Cowen, R., Williamson, I. K., David, A., Jimenez-Dalmaroni, M. J., Yuan, X., Bigliari, A., Williams, J. C., Hu, J. and Lowenstein, P. R. (2003) Current and future strategies for the treatment of malignant brain tumors. Pharmacol. Ther. 98, 71-108. https://doi.org/10.1016/S0163-7258(03)00014-7
- Chan, A. S., Cheung, M. C., Law, S. C. and Chan, J. H. (2004) Phase II study of alpha-tocopherol in improving the cognitive function of patients with temporal lobe radionecrosis. Cancer 100, 398-404. https://doi.org/10.1002/cncr.11885
- Chandana, S. R., Movva, S., Arora, M. and Singh, T. (2008) Primary brain tumors in adults. Am. Fam. Physician 77, 1423-1430.
- Chang, E. L., Wefel, J. S., Hess, K. R., Allen, P. K., Lang, F. F., Kornguth, D. G., Arbuckle, R. B., Swint, J. M., Shiu, A. S., Maor, M. H. and Meyers, C. A. (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus wholebrain irradiation: a randomised controlled trial. Lancet Oncol. 10, 1037-1044. https://doi.org/10.1016/S1470-2045(09)70263-3
- Chiang, C. S., Hong, J. H., Stalder, A., Sun, J. R., Withers, H. R. and McBride, W. H. (1997) Delayed molecular responses to brain irradiation. Int. J. Radiat. Biol. 72, 45-53. https://doi.org/10.1080/095530097143527
- Cohadon, F. (1990) Indications for surgery in the management of gliomas. Adv. Tech. Stand. Neurosurg. 17, 189-234. https://doi.org/10.1007/978-3-7091-6925-4_6
- Collins-Underwood, J. R., Zhao, W., Sharpe, J. G. and Robbins, M. E. (2008) NADPH oxidase mediates radiation-induced oxidative stress in rat brain microvascular endothelial cells. Free Radic. Biol. Med. 45, 929-938. https://doi.org/10.1016/j.freeradbiomed.2008.06.024
- Conner, K. R., Forbes, M. E., Lee, W. H., Lee, Y. W. and Riddle, D. R. (2011) AT1 receptor antagonism does not infl uence early radiationinduced changes in microglial activation or neurogenesis in the normal rat brain. Radiat. Res. 176, 71-83. https://doi.org/10.1667/RR2560.1
- Darzy, K. H., Pezzoli, S. S., Thorner, M. O. and Shalet, S. M. (2005) The dynamics of growth hormone (GH) secretion in adult cancer survivors with severe GH defi ciency acquired after brain irradiation in childhood for nonpituitary brain tumors: evidence for preserved pulsatility and diurnal variation with increased secretory disorderliness. J. Clin. Endocrinol. Metab. 90, 2794-2803. https://doi.org/10.1210/jc.2004-2002
- d'Avella, D., Cicciarello, R., Albiero, F., Mesiti, M., Gagliardi, M. E., Russi, E., d'Aquino, A., Tomasello, F. and d'Aquino, S. (1992) Quantitative study of blood-brain barrier permeability changes after experimental whole-brain radiation. Neurosurgery 30, 30-34. https://doi.org/10.1227/00006123-199201000-00006
- Davis, S., Aldrich, T. H., Jones, P. F., Acheson, A., Compton, D. L., Jain, V., Ryan, T. E., Bruno, J., Radziejewski, C., Maisonpierre, P. C. and Yancopoulos, G. D. (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87, 1161-1169. https://doi.org/10.1016/S0092-8674(00)81812-7
- DeAngelis, L. M., Delattre, J. Y. and Posner, J. B. (1989) Radiationinduced dementia in patients cured of brain metastases. Neurology 39, 789-796. https://doi.org/10.1212/WNL.39.6.789
- Delattre, J. Y., Shapiro, W. R. and Posner, J. B. (1989) Acute effects of low-dose cranial irradiation on regional capillary permeability in experimental brain tumors. J. Neurol. Sci. 90, 147-153. https://doi.org/10.1016/0022-510X(89)90097-X
- Deng, Z., Sui, G., Rosa, P. M. and Zhao, W. (2012) Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells. PLoS. One. 7, e36739. https://doi.org/10.1371/journal.pone.0036739
- Denham, J. W. and Hauer-Jensen, M. (2002) The radiotherapeutic injury--a complex 'wound'. Radiother. Oncol. 63, 129-145. https://doi.org/10.1016/S0167-8140(02)00060-9
- Dheen, S. T., Kaur, C. and Ling, E. A. (2007) Microglial activation and its implications in the brain diseases. Curr. Med. Chem. 14, 1189- 1197. https://doi.org/10.2174/092986707780597961
- Dimitrievich, G. S., Fischer-Dzoga, K. and Griem, M. L. (1984) Radiosensitivity of vascular tissue. I. Differential radiosensitivity of capillaries: a quantitative in vivo study. Radiat. Res. 99, 511-535. https://doi.org/10.2307/3576327
- Diserbo, M., Agin, A., Lamproglou, I., Mauris, J., Staali, F., Multon, E. and Amourette, C. (2002) Blood-brain barrier permeability after gamma whole-body irradiation: an in vivo microdialysis study. Can. J. Physiol. Pharmacol. 80, 670-678. https://doi.org/10.1139/y02-070
- Douw, L., Klein, M., Fagel, S. S., van den Heuvel, J., Taphoorn, M. J., Aaronson, N. K., Postma, T. J., Vandertop, W. P., Mooij, J. J., Boerman, R. H., Beute, G. N., Sluimer, J. D., Slotman, B. J., Reijneveld, J. C. and Heimans, J. J. (2009) Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term followup. Lancet Neurol. 8, 810-818. https://doi.org/10.1016/S1474-4422(09)70204-2
- Erol, F. S., Topsakal, C., Ozveren, M. F., Kaplan, M., Ilhan, N., Ozercan, I. H. and Yildiz, O. G. (2004) Protective effects of melatonin and vitamin E in brain damage due to gamma radiation: an experimental study. Neurosurg. Rev. 27, 65-69. https://doi.org/10.1007/s10143-003-0291-8
- Ferrara, N. (1999) Vascular endothelial growth factor: molecular and biological aspects. Curr. Top. Microbiol. Immunol. 237, 1-30. https://doi.org/10.1007/978-3-642-59953-8_1
- Ferrara, N., Gerber, H. P. and LeCouter, J. (2003) The biology of VEGF and its receptors. Nat. Med. 9, 669-676. https://doi.org/10.1038/nm0603-669
- Fiala, M., Zhang, L., Gan, X., Sherry, B., Taub, D., Graves, M. C., Hama, S., Way, D., Weinand, M., Witte, M., Lorton, D., Kuo, Y. M. and Roher, A. E. (1998) Amyloid-beta induces chemokine secretion and monocyte migration across a human blood--brain barrier model. Mol. Med. 4, 480-489.
- Fike, J. R., Cann, C. E., Phillips, T. L., Bernstein, M., Gutin, P. H., Turowski, K., Weaver, K. A., Davis, R. L., Higgins, R. J. and DaSilva, V. (1985) Radiation brain damage induced by interstitial 125I sources: a canine model evaluated by quantitative computed tomography. Neurosurgery 16, 530-537. https://doi.org/10.1227/00006123-198504000-00015
- Flora, G., Lee, Y. W., Nath, A., Maragos, W., Hennig, B. and Toborek, M. (2002) Methamphetamine-induced TNF-alpha gene expression and activation of AP-1 in discrete regions of mouse brain: potential role of reactive oxygen intermediates and lipid peroxidation. Neuromolecular Med. 2, 71-85. https://doi.org/10.1385/NMM:2:1:71
- Flowers, A. (2000) Brain tumors in the older person. Cancer Control 7, 523-538. https://doi.org/10.1177/107327480000700604
- Fukuda, A., Fukuda, H., Jönsson, M., Swanpalmer, J., Hertzman, S., Lannering, B., Bjork-Eriksson, T., Marky, I. and Blomgren, K. (2005) Progenitor cell injury after irradiation to the developing brain can be modulated by mild hypothermia or hyperthermia. J. Neurochem. 94, 1604-1619. https://doi.org/10.1111/j.1471-4159.2005.03313.x
- Gaber, M. W., Sabek, O. M., Fukatsu, K., Wilcox, H. G., Kiani, M. F. and Merchant, T. E. (2003) Differences in ICAM-1 and TNF-alpha expression between large single fraction and fractionated irradiation in mouse brain. Int. J. Radiat. Biol. 79, 359-366. https://doi.org/10.1080/0955300031000114738
- Garcia-Alloza, M., Prada, C., Lattarulo, C., Fine, S., Borrelli, L. A., Betensky, R., Greenberg, S. M., Frosch, M. P. and Bacskai, B. J. (2009) Matrix metalloproteinase inhibition reduces oxidative stress associated with cerebral amyloid angiopathy in vivo in transgenic mice. J. Neurochem. 109, 1636-1647. https://doi.org/10.1111/j.1471-4159.2009.06096.x
- Gardner, J. and Ghorpade, A. (2003) Tissue inhibitor of metalloproteinase (TIMP)-1: the TIMPed balance of matrix metalloproteinases in the central nervous system. J. Neurosci. Res. 74, 801-806. https://doi.org/10.1002/jnr.10835
- Giannelli, G., Bergamini, C., Marinosci, F., Fransvea, E., Quaranta, M., Lupo, L., Schiraldi, O. and Antonaci, S. (2002) Clinical role of MMP-2/TIMP-2 imbalance in hepatocellular carcinoma. Int. J. Cancer 97, 425-431. https://doi.org/10.1002/ijc.1635
- Giri, R., Selvaraj, S., Miller, C. A., Hofman, F., Yan, S. D., Stern, D., Zlokovic, B. V. and Kalra, V. K. (2002) Effect of endothelial cell polarity on beta-amyloid-induced migration of monocytes across normal and AD endothelium. Am. J. Physiol. Cell Physiol. 283, 895- 904. https://doi.org/10.1152/ajpcell.00293.2001
- Gonzalez, J., Kumar, A. J., Conrad, C. A. and Levin, V. A. (2007) Effect of bevacizumab on radiation necrosis of the brain. Int. J. Radiat. Oncol. Biol. Phys. 67, 323-326. https://doi.org/10.1016/j.ijrobp.2006.10.010
- Graham, C. A. and Cloughesy, T. F. (2004) Brain tumor treatment: chemotherapy and other new developments. Semin. Oncol. Nurs. 20, 260-272. https://doi.org/10.1016/j.soncn.2004.07.006
-
Groothuis, D. R., Wright, D. C. and Ostertag, C. B. (1987) The effect of
$^{125}I$ interstitial radiotherapy on blood-brain barrier function in normal canine brain. J. Neurosurg. 67, 895-902. https://doi.org/10.3171/jns.1987.67.6.0895 - Grosch, S. and Kaina, B. (1999) Transcriptional activation of apurinic/ apyrimidinic endonuclease (Ape, Ref-1) by oxidative stress requires CREB. Biochem. Biophys. Res. Commun. 261, 859-863. https://doi.org/10.1006/bbrc.1999.1125
- Hanahan, D. (1997) Signaling vascular morphogenesis and maintenance. Science 277, 48-50. https://doi.org/10.1126/science.277.5322.48
- Hayes, A. J., Huang, W. Q., Mallah, J., Yang, D., Lippman, M. E. and Li, L. Y. (1999) Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc. Res. 58, 224-237. https://doi.org/10.1006/mvre.1999.2179
- Hegi, M. E., Diserens, A. C., Gorlia, T., Hamou, M. F., de Tribolet, N., Weller, M., Kros, J. M., Hainfellner, J. A., Mason, W., Mariani, L., Bromberg, J. E., Hau, P., Mirimanoff, R. O., Cairncross, J. G., Janzer, R. C. and Stupp, R. (2005) MGMT gene silencing and benefi t from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997- 1003. https://doi.org/10.1056/NEJMoa043331
- Hess, K. R. (1999) Extent of resection as a prognostic variable in the treatment of gliomas. J. Neurooncol. 42, 227-231. https://doi.org/10.1023/A:1006118018770
- Hong, J. H., Chiang, C. S., Campbell, I. L., Sun, J. R., Withers, H. R. and McBride, W. H. (1995) Induction of acute phase gene expression by brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 33, 619-626. https://doi.org/10.1016/0360-3016(95)00279-8
- Hovdenak, N., Wang, J., Sung, C. C., Kelly, T., Fajardo, L. F. and Hauer- Jensen, M. (2002) Clinical signifi cance of increased gelatinolytic activity in the rectal mucosa during external beam radiation therapy of prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 53, 919-927. https://doi.org/10.1016/S0360-3016(02)02808-0
- Jenrow, K. A., Brown, S. L., Liu, J., Kolozsvary, A., Lapanowski, K. and Kim. J. H. (2010) Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus. Radiat. Oncol. 5, 6. https://doi.org/10.1186/1748-717X-5-6
- Jenrow, K. A., Liu, J., Brown, S. L., Kolozsvary, A., Lapanowski, K. and Kim, J. H. (2011) Combined atorvastatin and ramipril mitigate radiation-induced impairment of dentate gyrus neurogenesis. J. Neurooncol. 101, 449-456. https://doi.org/10.1007/s11060-010-0282-x
- Johannesen, T. B., Lien, H. H., Hole, K. H. and Lote, K. (2003) Radiological and clinical assessment of long-term brain tumour survivors after radiotherapy. Radiother. Oncol. 69, 169-176. https://doi.org/10.1016/S0167-8140(03)00192-0
- Kantor, G., Laprie, A., Huchet, A., Loiseau, H., Dejean, C. and Mazeron, J. J. (2008) Radiation therapy for glial tumors: technical aspects and clinical indications. Cancer Radiother. 12, 687-694. https://doi.org/10.1016/j.canrad.2008.09.004
- Keyeux, A., Brucher, J. M., Ochrymowicz-Bemelmans, D. and Charlier, A. A. (1997) Late effects of X irradiation on regulation of cerebral blood flow after whole-brain exposure in rats. Radiat. Res. 147, 621-630. https://doi.org/10.2307/3579629
- Khuntia, D., Brown, P., Li, J. and Mehta, M. P. (2006) Whole-brain radiotherapy in the management of brain metastasis. J. Clin. Oncol. 24, 1295-1304. https://doi.org/10.1200/JCO.2005.04.6185
- Kim, J. H., Brown, S. L., Jenrow, K. A. and Ryu, S. (2008) Mechanisms of radiation-induced brain toxicity and implications for future clinical trials. J. Neurooncol. 87, 279-286. https://doi.org/10.1007/s11060-008-9520-x
- Kim, J. H., Brown, S. L., Kolozsvary, A., Jenrow, K. A., Ryu, S., Rosenblum, M. L. and Carretero, O. A. (2004) Modifi cation of radiation injury by ramipril, inhibitor of angiotensin-converting enzyme, on optic neuropathy in the rat. Radiat. Res. 161, 137-142. https://doi.org/10.1667/RR3124
- Kim, S. H., Lim, D. J., Chung, Y. G., Cho, T. H., Lim, S. J., Kim, W. J. and Suh, J. K. (2002) Expression of TNF-alpha and TGF-beta 1 in the rat brain after a single high-dose irradiation. J. Korean Med. Sci. 17, 242-248. https://doi.org/10.3346/jkms.2002.17.2.242
- Kim, Y. S. and Joh, T. H. (2012) Matrix metalloproteinases, new insights into the understanding of neurodegenerative disorders. Biomol. Ther. 20, 133-143. https://doi.org/10.4062/biomolther.2012.20.2.133
- Koblizek, T. I., Weiss, C., Yancopoulos, G. D., Deutsch, U. and Risau, W. (1998) Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr. Biol. 8, 529-532. https://doi.org/10.1016/S0960-9822(98)70205-2
- Koo, Y. E., Reddy, G. R., Bhojani, M., Schneider, R., Philbert, M. A., Rehemtulla, A., Ross, B. D. and Kopelman, R. (2006) Brain cancer diagnosis and therapy with nanoplatforms. Adv. Drug Deliv. Rev. 58, 1556-1577. https://doi.org/10.1016/j.addr.2006.09.012
- Krishnamurthy, P., Peterson, J. T., Subramanian, V., Singh, M. and Singh, K. (2009) Inhibition of matrix metalloproteinases improves left ventricular function in mice lacking osteopontin after myocardial infarction. Mol. Cell Biochem. 322, 53-62. https://doi.org/10.1007/s11010-008-9939-6
- Kyrkanides, S., Moore, A. H., Olschowka, J. A., Daeschner, J. C., Williams, J. P., Hansen, J. T. and Kerry O'Banion, M. (2002) Cyclooxygenase- 2 modulates brain infl ammation-related gene expression in central nervous system radiation injury. Brain Res. Mol. Brain Res. 104, 159-169. https://doi.org/10.1016/S0169-328X(02)00353-4
- Lakshminarayanan, V., Drab-Weiss, E. A. and Roebuck, K. A. (1998) H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells. J. Biol. Chem. 273, 32670-32678. https://doi.org/10.1074/jbc.273.49.32670
- Lamproglou, I., Chen, Q. M., Boisserie, G., Mazeron, J. J., Poisson, M., Baillet, F., Le Poncin, M. and Delattre. J. Y. (1995) Radiation induced cognitive dysfunction: an experimental model in the old rat. Int. J. Radiat. Oncol. Biol. Phys. 31, 65-70. https://doi.org/10.1016/0360-3016(94)00332-F
- Lee, W. H., Cho, H. J., Sonntag, W. E. and Lee, Y. W. (2011) Radiation attenuates physiological angiogenesis by differential expression of VEGF, Ang-1, tie-2 and Ang-2 in rat brain. Radiat. Res. 176, 753- 760. https://doi.org/10.1667/RR2647.1
- Lee, W. H., Sonntag, W. E. and Lee, Y. W. (2010a) Aging attenuates radiation-induced expression of pro-infl ammatory mediators in rat brain. Neurosci. Lett. 476, 89-93. https://doi.org/10.1016/j.neulet.2010.04.009
- Lee, W. H., Sonntag, W. E., Mitschelen, M., Yan, H. and Lee, Y. W. (2010b) Irradiation induces regionally specifi c alterations in proinfl ammatory environments in rat brain. Int. J. Radiat. Biol. 86, 132- 144. https://doi.org/10.3109/09553000903419346
- Lee, W. H., Warrington, J. P., Sonntag, W. E. and Lee, Y. W. (2012) Irradiation alters MMP-2/TIMP-2 system and collagen type IV degradation in brain. Int. J. Radiat. Oncol. Biol. Phys. 82, 1559-1566. https://doi.org/10.1016/j.ijrobp.2010.12.032
- Lee, Y. W., Hennig, B., Fiala, M., Kim, K. S. and Toborek, M. (2001a) Cocaine activates redox-regulated transcription factors and induces TNF-alpha expression in human brain endothelial cells. Brain Res. 920, 125-133. https://doi.org/10.1016/S0006-8993(01)03047-5
- Lee, Y. W., Hennig, B. and Toborek, M. (2003) Redox-regulated mechanisms of IL-4-induced MCP-1 expression in human vascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 284, H185-192. https://doi.org/10.1152/ajpheart.00524.2002
- Lee, Y. W., Hennig, B., Yao, J. and Toborek, M. (2001b) Methamphetamine induces AP-1 and NF-kappaB binding and transactivation in human brain endothelial cells. J. Neurosci. Res. 66, 583-591. https://doi.org/10.1002/jnr.1248
- Lee, Y. W., Kuhn, H., Hennig, B., Neish, A. S. and Toborek, M. (2001c) IL-4-induced oxidative stress upregulates VCAM-1 gene expression in human endothelial cells. J. Mol. Cell Cardiol. 33, 83-94. https://doi.org/10.1006/jmcc.2000.1278
- Lee, Y. W., Park, H. J., Hennig, B. and Toborek, M. (2001d) Linoleic acid induces MCP-1 gene expression in human microvascular endothelial cells through an oxidative mechanism. J. Nutr. Biochem. 12, 648-654. https://doi.org/10.1016/S0955-2863(01)00186-3
- Limoli, C. L., Giedzinski, E., Rola, R., Otsuka, S., Palmer, T. D. and Fike, J. R. (2004) Radiation response of neural precursor cells: linking cellular sensitivity to cell cycle checkpoints, apoptosis and oxidative stress. Radiat. Res. 161, 17-27. https://doi.org/10.1667/RR3112
- Liu, B. and Hong, J. S. (2003) Role of microglia in infl ammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther. 304, 1-7. https://doi.org/10.1124/jpet.102.035048
- Liu, J. L., Tian, D. S., Li, Z. W., Qu, W. S., Zhan, Y., Xie, M. J., Yu, Z. Y., Wang, W. and Wu, G. (2010a) Tamoxifen alleviates irradiation-induced brain injury by attenuating microglial infl ammatory response in vitro and in vivo. Brain Res. 1316, 101-111. https://doi.org/10.1016/j.brainres.2009.12.055
- Liu, Y., Xiao, S., Liu, J., Zhou, H., Liu, Z., Xin, Y. and Suo, W. Z. (2010b) An experimental study of acute radiation-induced cognitive dysfunction in a young rat model. AJNR. Am. J. Neuroradiol. 31, 383- 387. https://doi.org/10.3174/ajnr.A1801
- Ljubimova, N. V., Levitman, M. K., Plotnikova, E. D. and Eidus, LKh. (1991) Endothelial cell population dynamics in rat brain after local irradiation. Br. J. Radiol. 64, 934-940. https://doi.org/10.1259/0007-1285-64-766-934
- Lukes, A., Mun-Bryce, S., Lukes, M. and Rosenberg, G. A. (1999) Extracellular matrix degradation by metalloproteinases and central nervous system diseases. Mol. Neurobiol. 19, 267-284. https://doi.org/10.1007/BF02821717
- Lyubimova, N. and Hopewell, J. W. (2004) Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injury. Br. J. Radiol. 77, 488-492. https://doi.org/10.1259/bjr/15169876
- Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., Compton, D., McClain, J., Aldrich, T. H., Papadopoulos, N., Daly, T. J., Davis, S., Sato, T. N. and Yancopoulos, G. D. (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55-60. https://doi.org/10.1126/science.277.5322.55
- Manda, K., Ueno, M., Moritake, T. and Anzai, K. (2007) Radiationinduced cognitive dysfunction and cerebellar oxidative stress in mice: protective effect of alpha-lipoic acid. Behav. Brain Res. 177, 7-14. https://doi.org/10.1016/j.bbr.2006.11.013
- Mandriota, S. J. and Pepper, M. S. (1998) Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ. Res. 83, 852-859. https://doi.org/10.1161/01.RES.83.8.852
- McGeer, P. L. and McGeer, E. G. (1995) The infl ammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Brain Res. Rev. 21, 195- 218. https://doi.org/10.1016/0165-0173(95)00011-9
- McGeer, P. L., Yasojima, K. and McGeer, E. G. (2001) Infl ammation in Parkinson's disease. Adv. Neurol. 86, 83-89.
- Miller, J. W., Adamis, A. P., Shima, D. T., D'Amore, P. A., Moulton, R. S., O'Reilly, M. S., Folkman, J., Dvorak, H. F., Brown, L. F. and Berse, B., et al. (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am. J. Pathol. 145, 574-584.
- Monje, M. L., Toda, H. and Palmer, T. D. (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760- 1765. https://doi.org/10.1126/science.1088417
- Moore, A. H., Olschowka, J. A., Williams, J. P., Okunieff, P. and O'Banion, M. K. (2005) Regulation of prostaglandin E2 synthesis after brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 62, 267-272. https://doi.org/10.1016/j.ijrobp.2005.01.035
- Moulder, J. E. and Cohen, E. P. (2007) Future strategies for mitigation and treatment of chronic radiation-induced normal tissue injury. Semin. Radiat. Oncol. 17, 141-148. https://doi.org/10.1016/j.semradonc.2006.11.010
- Mun-Bryce, S. and Rosenberg, G. A. (1998) Matrix metalloproteinases in cerebrovascular disease. J. Cereb. Blood Flow. Metab. 18, 1163- 1172. https://doi.org/10.1097/00004647-199811000-00001
- Mut, M. (2012) Surgical treatment of brain metastasis: a review. Clin. Neurol. Neurosurg. 114, 1-8. https://doi.org/10.1016/j.clineuro.2011.10.013
- National Brain Tumor Society. (2012) Brain Tumor Quick Facts. http:// www.braintumor.org/news/press-kit/brain-tumor-facts.html.
- New, P. (2001) Radiation injury to the nervous system. Curr. Opin. Neurol. 14, 725-734. https://doi.org/10.1097/00019052-200112000-00008
- Nguyen, V., Gaber, M. W., Sontag, M. R. and Kiani, M. F. (2000) Late effects of ionizing radiation on the microvascular networks in normal tissue. Radiat. Res. 154, 531-536. https://doi.org/10.1667/0033-7587(2000)154[0531:LEOIRO]2.0.CO;2
- Nirmala, C., Jasti, S. L., Sawaya, R., Kyritsis, A. P., Konduri, S. D., Ali- Osman, F., Rao, J. S. and Mohanam, S. (2000) Effects of radiation on the levels of MMP-2, MMP-9 and TIMP-1 during morphogenic glial-endothelial cell interactions. Int. J. Cancer 88, 766-771. https://doi.org/10.1002/1097-0215(20001201)88:5<766::AID-IJC13>3.0.CO;2-Y
- Nordal, R. A. and Wong, C. S. (2005) Molecular targets in radiationinduced blood-brain barrier disruption. Int. J. Radiat. Oncol. Biol. Phys. 62, 279-287. https://doi.org/10.1016/j.ijrobp.2005.01.039
- Olschowka, J. A., Kyrkanides, S., Harvey, B. K., O'Banion, M. K., Williams, J. P., Rubin, P. and Hansen, J. T. (1997) ICAM-1 induction in the mouse CNS following irradiation. Brain Behav. Immun. 11, 273-285. https://doi.org/10.1006/brbi.1997.0506
- Owoeye, O., Farombi, E. O. and Onwuka. S. K. (2011) Gross morphometric reduction of rats' cerebellum by gamma irradiation was mitigated by pretreatment with Vernonia amygdalina leaf extract. Rom. J. Morphol. Embryol. 52, 81-88.
- Park, H. J., Lee, Y. W., Hennig, B. and Toborek, M. (2001) Linoleic acid-induced VCAM-1 expression in human microvascular endothelial cells is mediated by the NF-kappa B-dependent pathway. Nutr. Cancer 41, 126-134. https://doi.org/10.1080/01635581.2001.9680623
- Paulsson, M. (1992) Basement membrane proteins: structure, assembly, and cellular interactions. Crit. Rev. Biochem. Mol. Biol. 27, 93-127. https://doi.org/10.3109/10409239209082560
- Pena, L. A., Fuks, Z. and Kolesnick, R. N. (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fi broblast growth factor and sphingomyelinase defi ciency. Cancer Res. 60, 321-327.
- Peschel, R. E., Wilson, L., Haffty, B., Papadopoulos, D., Rosenzweig, K. and Feltes, M. (1993) The effect of advanced age on the effi cacy of radiation therapy for early breast cancer, local prostate cancer and grade III-IV gliomas. Int. J. Radiat. Oncol. Biol. Phys. 26, 539-544. https://doi.org/10.1016/0360-3016(93)90973-Y
- Peters, K. G., Kontos, C. D., Lin, P. C., Wong, A. L., Rao, P., Huang, L., Dewhirst, M. W. and Sankar, S. (2004) Functional signifi cance of Tie2 signaling in the adult vasculature. Recent. Prog. Horm. Res. 59, 51-71. https://doi.org/10.1210/rp.59.1.51
- Planas, A. M., Sole, S. and Justicia, C. (2001) Expression and activation of matrix metalloproteinase-2 and -9 in rat brain after transient focal cerebral ischemia. Neurobiol. Dis. 8, 834-846. https://doi.org/10.1006/nbdi.2001.0435
- Plate, K. H. (1999) Mechanisms of angiogenesis in the brain. J. Neuropathol. Exp. Neurol. 58, 313-320. https://doi.org/10.1097/00005072-199904000-00001
- Plotnikova, E. D., Levitman, M. K., Shaposhnikova, V. V., Koshevoy, J. V. and Eidus, L. K. (1984) Protection of microcirculation in rat brain against late radiation injury by gammaphos. Int. J. Radiat. Oncol. Biol. Phys. 10, 365-368. https://doi.org/10.1016/0360-3016(84)90055-5
- Plotnikova, E. D., Levitman, M. K., Shaposhnikova, V. V., Koshevoj, J. V. and Eidus, L. K. (1988) Protection of microvasculature in rat brain against late radiation injury by gammaphos. Int. J. Radiat. Oncol. Biol. Phys. 15, 1197-1201. https://doi.org/10.1016/0360-3016(88)90204-0
- Quik, E. H., Valk, G. D., Drent, M. L., Stalpers, L. J., Kenemans, J. L., Koppeschaar, H. P. and Dam, P. S. (2012) Reduced growth hormone secretion after cranial irradiation contributes to neurocognitive dysfunction. Growth Horm. IGF. Res. 22, 42-47. https://doi.org/10.1016/j.ghir.2011.12.007
- Raju, U., Gumin, G. J. and Tofi lon, P. J. (2000) Radiation-induced transcription factor activation in the rat cerebral cortex. Int. J. Radiat. Biol. 76, 1045-1053. https://doi.org/10.1080/09553000050111514
- Ramanan, S., Kooshki, M., Zhao, W., Hsu, F. C., Riddle, D. R. and Robbins, M. E. (2009) The PPARalpha agonist fenofi brate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 75, 870-877. https://doi.org/10.1016/j.ijrobp.2009.06.059
- Ramanan, S., Zhao, W., Riddle, D. R. and Robbins, M. E. (2010) Role of PPARs in Radiation-Induced Brain Injury. PPAR. Res. 2010, 234975.
- Rampling, R., James, A. and Papanastassiou, V. (2004) The present and future management of malignant brain tumours: surgery, radiotherapy, chemotherapy. J. Neurol. Neurosurg. Psychiatry 75 Suppl 2, 24-30.
- Ribatti, D. (2005) The crucial role of vascular permeability factor/vascular endothelial growth factor in angiogenesis: a historical review. Br. J. Haematol. 128, 303-309. https://doi.org/10.1111/j.1365-2141.2004.05291.x
- Rola, R., Raber, J., Rizk, A., Otsuka, S., VandenBerg, S. R., Morhardt, D. R. and Fike, J. R. (2004) Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive defi cits in young mice. Exp. Neurol. 188, 316-330. https://doi.org/10.1016/j.expneurol.2004.05.005
- Roman, D. D. and Sperduto, P. W. (1995) Neuropsychological effects of cranial radiation: current knowledge and future directions. Int. J. Radiat. Oncol. Biol. Phys. 31, 983-998. https://doi.org/10.1016/0360-3016(94)00550-8
- Romanic, A. M., White, R. F., Arleth, A. J., Ohlstein, E. H. and Barone, F. C. (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase- 9 reduces infarct size. Stroke 29, 1020-1030. https://doi.org/10.1161/01.STR.29.5.1020
- Rosenberg, G. A., Estrada, E., Kelley, R. O. and Kornfeld, M. (1993) Bacterial collagenase disrupts extracellular matrix and opens blood-brain barrier in rat. Neurosci. Lett. 160, 117-119. https://doi.org/10.1016/0304-3940(93)90927-D
- Rosenblum, M. L., Gerosa, M., Dougherty, D. V., Reese, C., Barger, G. R., Davis, R. L., Levin, V. A. and Wilson, C. B. (1982) Age-related chemosensitivity of stem cells from human malignant brain tumours. Lancet 1, 885-887.
- Roth, N. M., Sontag, M. R. and Kiani, M. F. (1999) Early effects of ionizing radiation on the microvascular networks in normal tissue. Radiat. Res. 151, 270-277. https://doi.org/10.2307/3579938
- Rubin, L. L. and Staddon, J. M. (1999) The cell biology of the bloodbrain barrier. Annu. Rev. Neurosci. 22, 11-28. https://doi.org/10.1146/annurev.neuro.22.1.11
- Rubin, P., Gash, D. M., Hansen, J. T., Nelson, D. F. and Williams, J. P. (1994) Disruption of the blood-brain barrier as the primary effect of CNS irradiation. Radiother. Oncol. 31, 51-60. https://doi.org/10.1016/0167-8140(94)90413-8
- Rutka, J. T., Apodaca, G., Stern, R. and Rosenblum, M. (1988) The extracellular matrix of the central and peripheral nervous systems: structure and function. J. Neurosurg. 69, 155-170. https://doi.org/10.3171/jns.1988.69.2.0155
- Ryu, S., Kolozsvary, A., Jenrow, K. A., Brown. S. L. and Kim, J. H. (2007) Mitigation of radiation-induced optic neuropathy in rats by ACE inhibitor ramipril: importance of ramipril dose and treatment time. J. Neurooncol. 82, 119-124. https://doi.org/10.1007/s11060-006-9256-4
- Sara, M., Claudio, F., Marco, L., Roberto, L., Elena, M., Micaela, M., Lucia, P., Elena, B., Marina, S. and Michele, R. (2011) Time course of hypothalamic-pituitary defi ciency in adults receiving cranial radiotherapy for primary extrasellar brain tumors. Radiother. Oncol. 99, 23-28. https://doi.org/10.1016/j.radonc.2011.02.015
- Sato, T. N., Tozawa, Y., Deutsch, U., Wolburg-Buchholz, K., Fujiwara, Y., Gendron-Maguire, M., Gridley, T., Wolburg, H., Risau, W. and Qin, Y. (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376, 70-74. https://doi.org/10.1038/376070a0
- Sawaya, R., Tofi lon, P. J., Mohanam, S., Ali-Osman, F., Liotta, L. A., Stetler-Stevenson, W. G. and Rao, J. S. (1994) Induction of tissuetype plasminogen activator and 72-kDa type-IV collagenase by ionizing radiation in rat astrocytes. Int. J. Cancer 56, 214-218. https://doi.org/10.1002/ijc.2910560212
- Schindler, M. K., Forbes, M. E., Robbins, M. E. and Riddle. D. R. (2008) Aging-dependent changes in the radiation response of the adult rat brain. Int. J. Radiat. Oncol. Biol. Phys. 70, 826-834. https://doi.org/10.1016/j.ijrobp.2007.10.054
-
Schnegg, C. I., Kooshki, M., Hsu, F. C., Sui, G. and Robbins, M. E. (2012)
$PPAR{\delta}$ prevents radiation-induced proinfl ammatory responses in microglia via transrepression of NF-${\kappa}B$ and inhibition of the$PKC{\alpha}$ /MEK1/2/ERK1/2/AP-1 pathway. Free Radic. Biol. Med. 52, 1734-1743. https://doi.org/10.1016/j.freeradbiomed.2012.02.032 - Schultheiss, T. E. and Stephens, L. C. (1992) Invited review: permanent radiation myelopathy. Br. J. Radiol. 65, 737-753. https://doi.org/10.1259/0007-1285-65-777-737
- Schulz, J. B. and Falkenburger, B. H. (2004) Neuronal pathology in Parkinson's disease. Cell Tissue Res. 318, 135-147. https://doi.org/10.1007/s00441-004-0954-y
- Sellner, J. and Leib, S. L. (2006) In bacterial meningitis cortical brain damage is associated with changes in parenchymal MMP-9/TIMP- 1 ratio and increased collagen type IV degradation. Neurobiol. Dis. 21, 647-656. https://doi.org/10.1016/j.nbd.2005.09.007
- Sellner, J., Simon, F., Meyding-Lamade, U. and Leib, S. L. (2006) Herpes- simplex virus encephalitis is characterized by an early MMP-9 increase and collagen type IV degradation. Brain Res. 1125, 155- 162. https://doi.org/10.1016/j.brainres.2006.09.093
- Sepah, S. C. and Bower, J. E. (2009) Positive affect and infl ammation during radiation treatment for breast and prostate cancer. Brain Behav. Immun. 23, 1068-1072. https://doi.org/10.1016/j.bbi.2009.06.149
- Sheline, G. E., Wara, W. M. and Smith, V. (1980) Therapeutic irradiation and brain injury. Int. J. Radiat. Oncol. Biol. Phys. 6, 1215-1228. https://doi.org/10.1016/0360-3016(80)90175-3
- Shi, L., Adams, M. M., Long, A., Carter, C. C., Bennett, C., Sonntag, W. E., Nicolle, M. M., Robbins, M., D'Agostino, R. and Brunso- Bechtold, J. K. (2006) Spatial learning and memory defi cits after whole-brain irradiation are associated with changes in NMDA receptor subunits in the hippocampus. Radiat. Res. 166, 892-899. https://doi.org/10.1667/RR0588.1
- Shirazi, A., Ghobadi, G. and Ghazi-Khansari, M. (2007) A radiobiological review on melatonin: a novel radioprotector. J. Radiat. Res. 48, 263-272. https://doi.org/10.1269/jrr.06070
- Simon, A. R., Rai, U., Fanburg, B. L. and Cochran, B. H. (1998) Activation of the JAK-STAT pathway by reactive oxygen species. Am. J. Physiol. 275, 1640-1652. https://doi.org/10.1152/ajpcell.1998.275.6.C1640
- Simpson, J. R., Horton, J., Scott, C., Curran, W. J., Rubin, P., Fischbach, J., Isaacson, S., Rotman, M., Asbell, S. O. and Nelson, J. S. (1993) Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int. J. Radiat. Oncol. Biol. Phys. 26, 239-244. https://doi.org/10.1016/0360-3016(93)90203-8
- Staddon, J. M., Herrenknecht, K., Schulze, C., Smales, C. and Rubin, L. L. (1995) Signal transduction at the blood-brain barrier. Biochem. Soc. Trans. 23, 475-479. https://doi.org/10.1042/bst0230475
- Stone, H. B., Coleman, C. N., Anscher, M. S. and McBride. W. H. (2003) Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 4, 529-536. https://doi.org/10.1016/S1470-2045(03)01191-4
- Stone, H. B., Moulder, J. E., Coleman, C. N., Ang, K. K., Anscher, M. S., Barcellos-Hoff, M. H., Dynan, W. S., Fike, J. R., Grdina, D. J., Greenberger, J. S., Hauer-Jensen, M., Hill, R. P., Kolesnick, R. N., Macvittie, T. J., Marks, C., McBride, W. H., Metting, N., Pellmar, T., Purucker, M., Robbins, M. E., Schiestl, R. H., Seed, T. M., Tomaszewski, J. E., Travis, E. L., Wallner, P. E., Wolpert, M. and Zaharevitz, D. (2004) Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop, December 3-4, 2003. Radiat. Res. 162, 711- 728. https://doi.org/10.1667/RR3276
- Strup-Perrot, C., Vozenin-Brotons, M. C., Vandamme, M., Linard, C. and Mathé. D. (2005) Expression of matrix metalloproteinases and tissue inhibitor metalloproteinases increases in X-irradiated rat ileum despite the disappearance of CD8a T cells. World J. Gastroenterol. 11, 6312-6321. https://doi.org/10.3748/wjg.v11.i40.6312
- Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., Belanger, K., Brandes, A. A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R. C., Ludwin, S. K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J. G., Eisenhauer, E. and Mirimanoff, R. O; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987-996. https://doi.org/10.1056/NEJMoa043330
- Suo, Z., Tan, J., Placzek, A., Crawford, F., Fang, C. and Mullan, M. (1998) Alzheimer's beta-amyloid peptides induce infl ammatory cascade in human vascular cells: the roles of cytokines and CD40. Brain Res. 807, 110-117. https://doi.org/10.1016/S0006-8993(98)00780-X
- Tammela, T., Enholm, B., Alitalo, K. and Paavonen, K. (2005) The biology of vascular endothelial growth factors. Cardiovasc. Res. 65, 550-563. https://doi.org/10.1016/j.cardiores.2004.12.002
- Teismann, P., Tieu, K., Choi, D. K., Wu, D. C., Naini, A., Hunot, S., Vila, M., Jackson-Lewis, V. and Przedborski, S. (2003) Cyclooxygenase- 2 is instrumental in Parkinson's disease neurodegeneration. Proc. Natl. Acad. Sci. USA 100, 5473-5478. https://doi.org/10.1073/pnas.0837397100
- Tilling, T., Engelbertz, C., Decker, S., Korte, D., Hüwel, S. and Galla, H. J. (2002) Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures. Cell Tissue Res. 310, 19-29. https://doi.org/10.1007/s00441-002-0604-1
- Tilling, T., Korte, D., Hoheisel, D. and Galla, H. J. (1998) Basement membrane proteins infl uence brain capillary endothelial barrier function in vitro. J. Neurochem. 71, 1151-1157.
- Toborek, M., Lee, Y. W., Flora, G., Pu, H., András, I. E., Wylegala, E., Hennig, B. and Nath, A. (2005) Mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell Mol. Neurobiol. 25, 181-199. https://doi.org/10.1007/s10571-004-1383-x
- Tofilon, P. J. and Fike, J. R. (2000) The radioresponse of the central nervous system: a dynamic process. Radiat. Res. 153, 357-370. https://doi.org/10.1667/0033-7587(2000)153[0357:TROTCN]2.0.CO;2
- Tsao, M. N., Lloyd, N. S., Wong, R. K., Rakovitch, E., Chow, E. and Laperriere, N; Supportive Care Guidelines Group of Cancer Care Ontario's Program in Evidence-based Care. (2005) Radiotherapeutic management of brain metastases: a systematic review and meta-analysis. Cancer Treat. Rev. 31, 256-273. https://doi.org/10.1016/j.ctrv.2005.04.007
- Undeger, U., Giray, B., Zorlu, A. F., Oge, K. and Baçaran, N. (2004) Protective effects of melatonin on the ionizing radiation induced DNA damage in the rat brain. Exp. Toxicol. Pathol. 55, 379-384. https://doi.org/10.1078/0940-2993-00332
- Verhasselt, V., Goldman, M. and Willems, F. (1998) Oxidative stress up-regulates IL-8 and TNF-alpha synthesis by human dendritic cells. Eur. J. Immunol. 28, 3886-3890. https://doi.org/10.1002/(SICI)1521-4141(199811)28:11<3886::AID-IMMU3886>3.0.CO;2-M
- Villa, S., Vinolas, N., Verger, E., Yaya, R., Martinez, A., Gil, M., Moreno, V., Caral, L. and Graus, F. (1998) Efficacy of radiotherapy for malignant gliomas in elderly patients. Int. J. Radiat. Oncol. Biol. Phys. 42, 977-980. https://doi.org/10.1016/S0360-3016(98)00356-3
- Visse, R. and Nagase, H. (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827-839. https://doi.org/10.1161/01.RES.0000070112.80711.3D
- Vorotnikova, E., Rosenthal, R. A., Tries, M., Doctrow, S. R. and Braunhut. S. J. (2010) Novel synthetic SOD/catalase mimetics can mitigate capillary endothelial cell apoptosis caused by ionizing radiation. Radiat. Res. 173, 748-759. https://doi.org/10.1667/RR1948.1
- Walker, M. D., Alexander, E. Jr., Hunt, W. E., MacCarty, C. S., Mahaley, M. S. Jr., Mealey, J. Jr., Norrell, H. A., Owens, G., Ransohoff, J., Wilson, C. B., Gehan, E. A. and Strike, T. A. (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J. Neurosurg. 49, 333-343. https://doi.org/10.3171/jns.1978.49.3.0333
- Walker, M. D., Strike, T. A. and Sheline, G. E. (1979) An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int. J. Radiat. Oncol. Biol. Phys. 5, 1725-1731. https://doi.org/10.1016/0360-3016(79)90553-4
- Wang, Z., Juttermann, R. and Soloway, P. D. (2000) TIMP-2 is required for effi cient activation of proMMP-2 in vivo. J. Biol. Chem. 275, 26411-26415. https://doi.org/10.1074/jbc.M001270200
- Warrington, J. P., Csiszar, A., Johnson, D. A., Herman, T. S., Ahmad, S., Lee, Y. W. and Sonntag, W. E. (2011) Cerebral microvascular rarefaction induced by whole brain radiation is reversible by systemic hypoxia in mice. Am. J. Physiol. Heart Circ. Physiol. 300, H736-744. https://doi.org/10.1152/ajpheart.01024.2010
- Warrington, J. P., Csiszar, A., Mitschelen, M., Lee, Y. W. and Sonntag, W. E. (2012) Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia. PLoS. One. 7, e30444. https://doi.org/10.1371/journal.pone.0030444
- Wei, M., Li, H., Huang, H., Xu, D., Zhi, D., Liu, D. and Zhang, Y. (2012) Increased expression of EMMPRIN and VEGF in the rat brain after gamma irradiation. J. Korean Med. Sci. 27, 291-299. https://doi.org/10.3346/jkms.2012.27.3.291
- Welzel, G., Fleckenstein, K., Schaefer, J., Hermann, B., Kraus-Tiefenbacher, U., Mai, S. K. and Wenz, F. (2008) Memory function before and after whole brain radiotherapy in patients with and without brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 72, 1311-1318. https://doi.org/10.1016/j.ijrobp.2008.03.009
- Witzenbichler, B., Maisonpierre, P. C., Jones, P., Yancopoulos, G. D. and Isner, J. M. (1998) Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specifi c receptor tyrosine kinase Tie2. J. Biol. Chem. 273, 18514-185121. https://doi.org/10.1074/jbc.273.29.18514
- Wung, B. S., Cheng, J. J., Hsieh, H. J., Shyy, Y. J. and Wang, D. L. (1997) Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ. Res. 81, 1-7. https://doi.org/10.1161/01.RES.81.1.1
- Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J. and Holash, J. (2000) Vascular-specifi c growth factors and blood vessel formation. Nature 407, 242-248. https://doi.org/10.1038/35025215
- Yang, K., Liu, L., Zhang, T., Wu, G., Ruebe, C., Ruebe, C. and Hu, Y. (2006) TGF-betal transgenic mouse model of thoracic irradiation: modulation of MMP-2 and MMP-9 in the lung tissue. J. Huazhong Univ. Sci. Technolog. Med. Sci. 26, 301-304. https://doi.org/10.1007/BF02829557
- Yang, K., Palm, J., Konig, J., Seeland, U., Rosenkranz, S., Feiden, W., Rübe, C. and Rübe, C. E. (2007) Matrix-Metallo-Proteinases and their tissue inhibitors in radiation-induced lung injury. Int. J. Radiat. Biol. 83, 665-676. https://doi.org/10.1080/09553000701558977
- Yoneoka, Y., Satoh, M., Akiyama, K., Sano, K., Fujii, Y. and Tanaka, R. (1999) An experimental study of radiation-induced cognitive dysfunction in an adult rat model. Br. J. Radiol. 72, 1196-1201. https://doi.org/10.1259/bjr.72.864.10703477
- Zhao, W., Goswami, P. C. and Robbins, M. E. (2004) Radiation-induced up-regulation of Mmp2 involves increased mRNA stability, redox modulation, and MAPK activation. Radiat. Res. 161, 418- 429. https://doi.org/10.1667/3155
- Zhao, W., Payne, V., Tommasi, E., Diz, D. I., Hsu, F. C. and Robbins, M. E. (2007) Administration of the peroxisomal proliferator-activated receptor gamma agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment. Int. J. Radiat. Oncol. Biol. Phys. 67, 6-9. https://doi.org/10.1016/j.ijrobp.2006.09.036
- Zhou, H., Liu, Z., Liu, J., Wang, J., Zhou, D., Zhao, Z., Xiao, S., Tao, E. and Suo W. Z. (2011) Fractionated radiation-induced acute encephalopathy in a young rat model: cognitive dysfunction and histologic fi ndings. Am. J. Neuroradiol. 32, 1795-1800. https://doi.org/10.3174/ajnr.A2643
Cited by
- Shenqi Fuzheng Injection attenuates irradiation-induced brain injury in mice via inhibition of the NF-κB signaling pathway and microglial activation vol.36, pp.11, 2015, https://doi.org/10.1038/aps.2015.69
- Cancer-treatment-induced neurotoxicity—focus on newer treatments vol.13, pp.2, 2015, https://doi.org/10.1038/nrclinonc.2015.152
- The biology of cancer-related fatigue: a review of the literature vol.23, pp.8, 2015, https://doi.org/10.1007/s00520-015-2763-0
- Prophylactic Cranial Irradiation (PCI) versus Active MRI Surveillance for Small Cell Lung Cancer: The Case for Equipoise 2017, https://doi.org/10.1016/j.jtho.2017.08.016
- Ameliorative effect of black grape juice on systemic alterations and mandibular osteoradionecrosis induced by whole brain irradiation in rats vol.93, pp.2, 2017, https://doi.org/10.1080/09553002.2017.1231945
- Cerebromicrovascular dysfunction predicts cognitive decline and gait abnormalities in a mouse model of whole brain irradiation-induced accelerated brain senescence vol.39, pp.1, 2017, https://doi.org/10.1007/s11357-017-9964-z
- IRAK1/4-Targeted Anti-Inflammatory Action of Caffeic Acid vol.2013, 2013, https://doi.org/10.1155/2013/518183
- Kognitive Defizite nach Strahlentherapie von Hirntumoren 2017, https://doi.org/10.1007/s00115-017-0423-y
- Effects of ionizing radiation on the mammalian brain vol.770, 2016, https://doi.org/10.1016/j.mrrev.2016.08.003
- Radiation induces progenitor cell death, microglia activation, and blood-brain barrier damage in the juvenile rat cerebellum vol.7, 2017, https://doi.org/10.1038/srep46181
- Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours vol.13, pp.1, 2016, https://doi.org/10.1038/nrneurol.2016.185
- Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury vol.54, pp.2, 2017, https://doi.org/10.1007/s12035-015-9628-x
- Long-term effects of radiation therapy on white matter of the corpus callosum: a diffusion tensor imaging study in children 2017, https://doi.org/10.1007/s00247-017-3955-1
- Cognitive impairments following cranial irradiation can be mitigated by treatment with a tropomyosin receptor kinase B agonist vol.279, 2016, https://doi.org/10.1016/j.expneurol.2016.02.021
- The use of angiotensin II receptor antagonists to increase the efficacy of radiotherapy in cancer treatment vol.10, pp.15, 2014, https://doi.org/10.2217/fon.14.177
- Role of NADPH oxidase in radiation-induced pro-oxidative and pro-inflammatory pathways in mouse brain vol.93, pp.11, 2017, https://doi.org/10.1080/09553002.2017.1377360
- Strategies to Preserve Cognition in Patients With Brain Metastases: A Review vol.8, pp.2234-943X, 2018, https://doi.org/10.3389/fonc.2018.00415
- N-methyl-D-aspartate Receptor Mediates X-irradiation-induced Drebrin Decrease in Hippocampus vol.68, pp.2, 2018, https://doi.org/10.2974/kmj.68.111
- Identification of brain metastasis genes and therapeutic evaluation of histone deacetylase inhibitors in a clinically relevant model of breast cancer brain metastasis vol.11, pp.7, 2018, https://doi.org/10.1242/dmm.034850
- Cerebrospinal fluid markers of extracellular matrix remodelling, synaptic plasticity and neuroinflammation before and after cranial radiotherapy vol.284, pp.2, 2018, https://doi.org/10.1111/joim.12763
- Radiation resistance of normal human astrocytes: the role of non-homologous end joining DNA repair activity vol.60, pp.1, 2019, https://doi.org/10.1093/jrr/rry084
- Disorder in Pixel-Level Edge Directions on T1WI Is Associated with the Degree of Radiation Necrosis in Primary and Metastatic Brain Tumors: Preliminary Findings pp.1936-959X, 2019, https://doi.org/10.3174/ajnr.A5958
- Stem Cell Therapies for the Resolution of Radiation Injury to the Brain vol.3, pp.4, 2017, https://doi.org/10.1007/s40778-017-0105-5
- Sodium butyrate prevents radiation-induced cognitive impairment by restoring pCREB/BDNF expression vol.14, pp.9, 2019, https://doi.org/10.4103/1673-5374.255974
- Mania as a possible complication of immunotherapy vol.24, pp.1, 2020, https://doi.org/10.1002/pnp.555
- Extracellular Vesicle–Derived miR-124 Resolves Radiation-Induced Brain Injury vol.80, pp.19, 2020, https://doi.org/10.1158/0008-5472.can-20-1599
- Study protocol: watchful observation of patients with limited small cell lung cancer instead of the PCI—prospective, multi-center one-arm study vol.20, pp.None, 2012, https://doi.org/10.1186/s12885-020-06721-8
- Neurobehavioral effects of acute low-dose whole-body irradiation vol.62, pp.5, 2012, https://doi.org/10.1093/jrr/rrab026
- Cognitive sequelae of radiotherapy in primary brain tumors vol.26, pp.None, 2012, https://doi.org/10.1016/j.inat.2021.101305