DOI QR코드

DOI QR Code

Physical Characteristic and In vitro Transdermal Delivery of PCL-b-PEG Micelles Containing Quercetin and Rutin

Quercetin과 Rutin을 함유하는 PCL-b-PEG 고분자 미셀의 특성 및 피부 흡수에 관한 In vitro 연구

  • Lim, Gyu-Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Kim, Sun-Young (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Kim, Min-Ji (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo-Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 임규남 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 김선영 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 김민지 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소)
  • Received : 2011.11.28
  • Accepted : 2012.02.20
  • Published : 2012.07.25

Abstract

In this study, we prepared polymer micelles containing quercetin and rutin, known as antioxidants, using poly(${\varepsilon}$-caprolactone)-b-poly(ethylene glycol), and evaluated in vitro skin permeation of the active materials. Quercetin and rutin loaded micelles were characterized by DSC (differential scanning calorimetry), HPLC (high performance liquid chromatography) and DLS (dynamic light scattering) measurements. The particle size of the polymer micelles increased in a concentration dependent manner (0.5~2.0% PCL-b-PEG). The Zeta potential of quercetin and rutin loaded micelles remained constant. To evaluate the skin penetration of PCL-b-PEG micelles, Franz diffusion cell experiment was performed. The aqueous solutions of quercetin and rutin were used as the control groups. Quercetin and rutin loaded PCL-b-PEG micelles showed more efficient skin permeation than the control groups. Safety assessment (patch test) of quercetin and rutin loaded PCL-b-PEG micelles on skin was performed to test application possibility of the polymer micelles to cosmetics. Any adverse symptoms were not observed.

본 연구에서는 항산화 물질로 잘 알려진 quercetin과 그 배당체인 rutin을 함유하는 poly(${\varepsilon}$-caprolactone)-b-poly(ethylene glycol) 미셀을 제조하여, 활성물질(quercetin, rutin)의 in vitro 피부 흡수 증진에 관한 연구를 수행하였다. 입자크기는 PCL-b-PEG 고분자의 농도가 증가함에 따라 미셀의 초기 입자 크기가 증가하는 경향을 보였다. 고분자 미셀의 표면 전위(Zeta potential)는 비교적 일정함을 확인하였다. 제조한 고분자 미셀의 피부 흡수력을 평가하기 위하여, 용액 상태의 활성물질을 미셀의 대조군으로 하여 Franz cell을 이용한 투과실험을 진행한 결과 용액 상태보다 미셀에서 더 높게 나타났음을 확인하였다. 또한 화장품 소재로서의 안전성 평가를 위한 인체 피부 일차자극 실험(patch test) 결과 어떠한 피부 자극도 관찰되지 않았다.

Keywords

References

  1. E. Blanco, E. A. Bey, Y. Dong, B. D. Weinberg, D. M. Sutton, D. A. Boothman, and J. Gao, J. Control. Release, 122, 365 (2007). https://doi.org/10.1016/j.jconrel.2007.04.014
  2. T. Yi, J. Wan, H. Xu, and X. Yang, Eur. J. Pharm. Biopharm., 70, 439 (2008). https://doi.org/10.1016/j.ejpb.2008.05.001
  3. C. J. Porter, K. M. Wasan, and P. Constantinides, Adv. Drug Deliv. Rev., 60, 615 (2008). https://doi.org/10.1016/j.addr.2007.10.009
  4. A. Tan, S. Simovic, A. L. Davey, T. Radws, and C. A. Prestidge, J. Control. Release, 134, 62 (2009). https://doi.org/10.1016/j.jconrel.2008.10.014
  5. K. M. Huh, H. S. Min, S. C. Lee, H. J. Lee, S. W. Kim, and K. N. Park, J. Control. Release, 126, 122 (2008). https://doi.org/10.1016/j.jconrel.2007.11.008
  6. C. Li and S. Wallace, Adv. Drug Deliv. Rev., 60, 886 (2008). https://doi.org/10.1016/j.addr.2007.11.009
  7. S. W. Kim, J. Y. Kim, K. M. Huh, G. Acharya, and K. N. Park, J. Control. Release, 132, 222 (2008). https://doi.org/10.1016/j.jconrel.2008.07.004
  8. N. Ahuja, O. P. Katare, and B. Singh, Eur. J. Pharm. Biopharm., 65, 26 (2007). https://doi.org/10.1016/j.ejpb.2006.07.007
  9. N. Nishiyama and K. Kataoka, Pharmacol. Therapeut., 112, 630 (2006). https://doi.org/10.1016/j.pharmthera.2006.05.006
  10. A. Lavasanifar, J. Samuel, and G. S. Kwon, Adv. Drug Deliv. Rev., 54, 169 (2002). https://doi.org/10.1016/S0169-409X(02)00015-7
  11. M. Yokoyama, A. Satoh, Y. Sakurai, T. Okano, Y. Matsumura, T. Kazunori, and K. Kataoka, J. Control. Release, 55, 219 (1998). https://doi.org/10.1016/S0168-3659(98)00054-6
  12. G. Giammona, G. Puglisi, G. Carallaro, A. Spadaro, and G. Pitarresi, J. Control. Release, 33, 261 (1995). https://doi.org/10.1016/0168-3659(94)00091-8
  13. M. Yokoyama, S. Fukushima, R. Uehara, K. Okamoto, K. Kataoka, Y. Sakurai, and T. Okano, J. Control. Release, 50, 79 (1998). https://doi.org/10.1016/S0168-3659(97)00115-6
  14. J. A. Hubbell, Science, 300, 595 (2003). https://doi.org/10.1126/science.1083625
  15. K. Kataoka, A. Harada, and Y. Nagasaki, Adv. Drug Deliv. Rev., 47, 113 (2001). https://doi.org/10.1016/S0169-409X(00)00124-1
  16. S. Kwon, J. H. Park, H. Chung, I. C. Kwon, and S. Y. Jeong, Langmuir, 19, 10188 (2003). https://doi.org/10.1021/la0350608
  17. A. Cudd, M. Bhogal, J. O'Mullavne, and P. Goddard, Proc. Nati. Acad. Sci., 88, 10855 (1991). https://doi.org/10.1073/pnas.88.23.10855
  18. C. F. Skibola and M. T. Smith, Free Radic. Biol. Med., 28, 375 (2000).
  19. P. Mahakunakorn, M. Tohda, Y. Murakami, K. Matsumoto, and H. Watanabe, Biol. Pharm. Bull., 27, 38 (2004). https://doi.org/10.1248/bpb.27.38
  20. P. Knekt, R. Jarvinen, A. Reunanen, and J. Maatela, Br. Med. J., 312, 478 (1996). https://doi.org/10.1136/bmj.312.7029.478
  21. M. G. Hertog, P. M. Sweetnam, A. M. Fehily, P. C. Elwood, and D. Kromhout, Am. J. Clin, Nutr., 65, 1489 (1997). https://doi.org/10.1093/ajcn/65.5.1489
  22. C. A. Rice-Evans, N. J. Miller, and G. Paganga, Trends Plant Sci., 2, 152 (1997). https://doi.org/10.1016/S1360-1385(97)01018-2
  23. I. Morel, G. Lescoat, P. Cogrel, O. Sergent, N. Pasdeloup, P. Brissot, P. Cillard, and J. Cilard, Biochem. Pharmacol., 45, 13 (1993). https://doi.org/10.1016/0006-2952(93)90371-3
  24. Y. Sadzuka, T. Sugiyama, K. Shimoi, N. Kinae, and S. Hirota, Toxicol. Lett., 92, 1 (1997). https://doi.org/10.1016/S0378-4274(97)00028-3
  25. M. F. Molina, I. Sanchez-Reus, I. Iglesias, and J. Bene, Biol. Pharm. Bull., 26, 1398 (2003). https://doi.org/10.1248/bpb.26.1398
  26. X. Dong, G. Z. Zhen-Lun, B. J. Ping, and W. Zhong, Acta. Pharmacol. Sin., 16, 223 (1995).
  27. S. M. Thornhill and A. M. Kelly, Altern. Med. Rev., 5, 448 (2000).
  28. D. H. Kim, E. A. Jung, I. S. Sohng, J. A. Han, T. H. Kim, and M. J. Han, Arch. Pharm. Res., 21, 17 (1998). https://doi.org/10.1007/BF03216747
  29. I. K. Chun and E. H. Suh, Yakhak Hoeii, 42, 59 (1998).
  30. A. Weiss, Pharm. Zentralblatt, 13, 903 (1842).
  31. I. B. Afanas'ev, E. A. Ostrakhovitch, E. V. Mikhal'chik, G. A. Ibragimova, and L. G. Korkina, Biochem. Pharmacol., 61, 677 (2001). https://doi.org/10.1016/S0006-2952(01)00526-3
  32. N. Yildizogle-Ari, V. M. Altan, O. Altinkurt, and Y. Ozturk, Phytother. Res., 5, 19 (1991). https://doi.org/10.1002/ptr.2650050106
  33. Y. Matsubara, H. Kumamoto, Y. lizuka, T. Murakami, K. Okamoto, H. Miyake, and K. Yokoi, Agric. Biol. Chem., 49, 909 (1985). https://doi.org/10.1271/bbb1961.49.909
  34. K. Iwata, S. Miwa, T. Inayama, H. Sasaki, K. Soeda, and T. Sugahara, J. Kagawa Nutr. Coll., 21, 55 (1990).
  35. J. Q. Griffith, J. F. Couch, and M. A. Lindauer, Proc. Soc. Exptl. Biol. Med., 55, 228 (1944). https://doi.org/10.3181/00379727-55-14532
  36. M. F. A. Bakar, M. Mohamed, A. Rahmat, and J. Fry, Food Chem., 113, 479 (2009). https://doi.org/10.1016/j.foodchem.2008.07.081
  37. J. Yang, J. Guo, and J. Tuan, LWT-Food Sci. Tech., 41, 1060 (2008). https://doi.org/10.1016/j.lwt.2007.06.010
  38. C. Wagner, R. Fachineto, C. L. Morel, C. W. Nogueira, and J. B. T. Rocha, Brain Res., 1107, 192 (2006). https://doi.org/10.1016/j.brainres.2006.05.084
  39. I. Krefr, N. Fabha, and M. Germ, Fagopyrum, 20, 7 (2003).
  40. K. Kataoka, A. Harada, and Y. Nagasaki, Adv. Drug Deliv. Rev., 47, 113 (2001). https://doi.org/10.1016/S0169-409X(00)00124-1
  41. Y. K. Lee, Macromol. Res., 14, 387 (2006). https://doi.org/10.1007/BF03219099
  42. A. Lavasanifar, J. Samuel, and G. S. Kwon, J. Control. Release, 77, 155 (2001). https://doi.org/10.1016/S0168-3659(01)00477-1
  43. S. K. Agrawal, N. S. DeLong, J. M. Coburn, G. N. Tew, and S. R. Bhatia, J. Control. Release, 112, 64 (2006). https://doi.org/10.1016/j.jconrel.2005.12.024
  44. M. L. Adams and G. S. Kwon, J. Control. Release, 87, 23 (2003). https://doi.org/10.1016/S0168-3659(02)00347-4
  45. G. S. Kwon and K. KataoKa, Adv. Drug Deliv. Rev., 16, 295 (1995). https://doi.org/10.1016/0169-409X(95)00031-2
  46. G. Gausher, M. H. Dufresne, V. P. Sant, N. Kang, D. Maysinger, and J. C. Leroux, J. Control. Release, 109, 169 (2005). https://doi.org/10.1016/j.jconrel.2005.09.034
  47. K. M. Huh, S. C. Lee, Y. W. Cho, J. Lee, J. H. Jeong, and K. Park, J. Control. Release, 101, 59 (2005). https://doi.org/10.1016/j.jconrel.2004.07.003
  48. R. T. Liggins and H. M. Burt, Adv. Drug Deliv. Rev., 54, 191 (2002). https://doi.org/10.1016/S0169-409X(02)00016-9
  49. S. P. Satu, H. Marina, and I. H. Anu, J. Sci. Food Agric., 79, 499 (1999). https://doi.org/10.1002/(SICI)1097-0010(19990315)79:4<499::AID-JSFA204>3.0.CO;2-U
  50. K. Herrmann, J. Food. Technol., 11, 433 (1976). https://doi.org/10.1111/j.1365-2621.1976.tb00743.x
  51. P. J. Frosch and A. M. Kligman, J. Am. Acad. Dermatol., 1, 35 (1979). https://doi.org/10.1016/S0190-9622(79)70001-6
  52. CTFA Safety Testing Guideline, The Cosmetic, Toiletry and Fragrance Association, Inc., Washington, D.C., 20005 (1981).
  53. K. H. Jeong and Y. J. Kim, Polymer(Korea), 30, 512 (2006).
  54. J. H. Im, Y. K. Lee, and K. M. Huh, Polymer(Korea), 32, 143 (2008).
  55. Y. I. Jeong, M. K. Jang, and J. W. Nah, Polymer(Korea), 33, 137 (2009).
  56. J. Z. Bei, J. M. Li, Z. F. Wang, J. C. Le, and S. G. Wang, Poly. Adv. Tech., 8, 693 (1997). https://doi.org/10.1002/(SICI)1099-1581(199711)8:11<693::AID-PAT702>3.0.CO;2-B

Cited by

  1. Preparation of methoxy poly (ethyleneglycol)-b-poly (ε-caprolactone-co-L-lactide) and characterization as biodegradable micelles vol.21, pp.6, 2014, https://doi.org/10.1007/s10965-014-0474-8
  2. Fabrication of electrospun antioxidant nanofibers by rutin-pluronic solid dispersions for enhanced solubility vol.134, pp.21, 2017, https://doi.org/10.1002/app.44859