DOI QR코드

DOI QR Code

Effects of Molecular Weight of Poly(ethylene glycol) on the Thermal Properties and the Alkaline Hydrolysis of Copolyesters

폴리에틸렌글리콜의 분자량이 공중합 폴리에스터의 열적 특성 및 알칼리 가수분해에 미치는 영향

  • Kim, Young-June (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Jee, Min-Ho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Lee, Eun-Hee (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Choi, Jin-Uk (KOLON FM Research Center) ;
  • Noh, Dong-Hyun (KOLON FM Research Center) ;
  • Rho, Hwan-Kwon (KOLON FM Research Center) ;
  • Baik, Doo-Hyun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • 김영준 (충남대학교 유기소재.섬유시스템공학과) ;
  • 지민호 (충남대학교 유기소재.섬유시스템공학과) ;
  • 이은희 (충남대학교 유기소재.섬유시스템공학과) ;
  • 최진욱 (코오롱 FM 연구소) ;
  • 노동현 (코오롱 FM 연구소) ;
  • 노환권 (코오롱 FM 연구소) ;
  • 백두현 (충남대학교 유기소재.섬유시스템공학과)
  • Received : 2012.01.03
  • Accepted : 2012.02.02
  • Published : 2012.02.28

Abstract

Copolyesters containing sodium sulfonate group and poly(ethylene glycol) (PEG) were synthesized with various molecular weight of PEG. The selected molecular weights of PEG were 1000, 2000, 4000, 6000, and 16000. The thermal properties and the crystallization behaviors of the copolyesters were investigated by using differential scanning calorimeter (DSC). Alkaline hydrolysis of the copolyesters was studied as a function of the treatment time. The melting temperatures and the heats of fusion of the copolyesters increased with an increase in the PEG molecular weight, while the weight reduction rate of copolyesters in an alkaline solution decreased with an increase in the PEG molecular weight. At the same PEG content in copolyesters, hard segment length increases with the PEG molecular weight, which was thought to be the most important factor that determines the thermal properties and the alkaline hydrolysis behavior.

Keywords

References

  1. 도성준, 백두현, "나노필라멘트 제조 기술", 섬유기술과 산업, 2010, 14, 47-54.
  2. 조현태, 이경남, "합성섬유의 초극세화 및 응용기술개발", 섬유기술과 산업, 2007, 11, 47-52.
  3. 고준석, 백두현, 이철민, 도성준, "나노필라멘트 기술 특허 동향", 섬유기술과 산업, 2009, 13, 268-277.
  4. J. W. Lee, D. S. So, and H. S. Su, "Nanofibers : Preparation and Applications", KIC News, 2010, 13, 32-50.
  5. M. S. Lee, "Preparation and Properties of Copolyesters for Islands-in-the-sea Conjugate Fibers", Doctoral Thesis, Chungnam National University, Korea, 2007.
  6. G. L. Kim, "Synthesis and Properties of Copolyesters Containing Sodium Sulfonate Groups (Water solubility and electrical properties)", Master Thesis, Chungnam National University, Korea, 1997.
  7. O. Gaona, D. P. R. Kint, A. M. de Ilarduya, A. Alla, J. Bou, and S. Munoz-Guerra, "Preparation and Hydrolytic Degradation of Sulfonated Poly(ethylene terephthalate) Copolymers", Polymer, 2003, 44, 7281-7289. https://doi.org/10.1016/j.polymer.2003.09.044
  8. K. J. Hsiao, J. L. Kuo, J. W. Tang, and L. T. Chen, "Physics and Kinethics of Alkaline Hydrolysis of Cationic Dyeable Poly(ethylene terephthalate) (CDPET) and Polyethylene Glycol (PEG)-Modified CDPET Polymers: Effects of Dimethyl 5-Sulfoisophthalate Sodium Salt/PEG Content and the Number-Average Molecular Weight of the PEG", Polym Sci, 2005, 98, 550-556.
  9. H. S. Kim, "Preparation and Properties of Copolyester Containing Sodium Sulfonate and Poly(ethylene glycol)", Master Thesis, Chungnam National University, Korea, 2002.
  10. Z. Y. Oian, S. Li, Y. He, and X. B. Liu, "Synthesis and in vitro Degradation Study of Poly(ethylene terephthalate)/ poly(ethylene glycol) (PET/PEG) Multiblock Copolymer", Polym Degr Stabil, 2004, 83, 93-100. https://doi.org/10.1016/S0141-3910(03)00229-5
  11. 양승철, 손양국, 권익현, "심색성 폴리에스터 해도형 복합사 및 이의 제조방법", 대한민국특허청, 10-2005-0027759, 2005.
  12. 김재영, "초극세사용 추출형 복합섬유", 대한민국특허청, 10-2006-0098118, 2006.
  13. 양승철, 김응수, 손양국, 권익현, "카치온 염료 가염성 난연성 폴리에스터 중합물 및 이의 제조방법, 그리고 이로부터 제조되는 코폴리에스터 섬유", 대한민국특허청, 10-2005- 0107858, 2005.
  14. 김진년, 김상필, 박병식, 김인국, 윤창원, "알칼리 이용성 코폴리에스터의 제조방법 및 그 코폴리에스터", 대한민국특허청, 10-2006-0003581, 2006.
  15. 양승철, 손양국, 권익현, "복합사용 알칼리 이용성 코폴리에스터 중합물과 이의 제조방법 및 이를 사용한 폴리에스터 복합섬유", 대한민국특허청, 10-2004-0095380, 2004.
  16. 김도균, 이재홍, 최영근, 김영호, "내알칼리성이 우수한 캐티온 염색성 해도형 극세사 및 그 제조방법", 대한민국특허청, 10-2005-0001085, 2005.
  17. D. H. Baik and K. H. Min, "Synthesis and Properties of Segmented Block Copolyetherester Elastomers Based on Poly(trimethylene terephthalate) and Poly(tetramethylene ether glycol)(I)-Synthesis and Thermal Properties-", Text Sci Eng, 2000, 37, 629-636.
  18. D. H. Baik and H. Y. Kim, "Synthesis and Properties of Segmented Block Copolyetherester Elastomers Based on PTT, PBT, PBN and Poly(tetramethylene ether glycol)(I)-Synthesis and Thermal Properties-", Text Sci Eng, 2005, 42, 217-227.
  19. B. Y. Jeon, "Synthesis, Structure, and Properties of Segmented Block Copolyetheresters Based on Poly(butylene terephthalate) and Poly(tetramethylene ether glycol)", Doctoral Thesis, Chungnam National University, Korea, 1997.
  20. H. K. Frensdroff, "Block-frequency Distribution of Copolymers", Macromolecules, 1971, 4, 369-375. https://doi.org/10.1021/ma60022a002
  21. L. H. Peebles, Jr., "Sequence Length Distribution in Segmented Block Copolymers", Macromolecules, 1974, 7, 872-882. https://doi.org/10.1021/ma60042a034
  22. H. Li and J. L. White, "Structure Development in Melt Spinning Filaments from Polybutylene Terephthalate Based Thermoplastic Elastomers", Polym Sci, 2000, 40, 917-928.
  23. H. Schmalz, V. Abetz, R. Lange, and M. Soliman, "New Thermoplastic Elastomers by Incorporation of Nonpolar Soft Segments in PBT-based Copolyesters", Macromolecules, 2001, 34, 795-800. https://doi.org/10.1021/ma001226p
  24. B. Wunderlich, "Macromolecular Physics (Volume 1) - Crystal Structure, Morphology, Defects", Academic Press, NY, 1973, p.178.
  25. M. L. Di Lorenzo and C. Silvestre, "Non-isothermal Crystallization of Polymers", Prog Polym Sci, 1999, 24, 917-950 https://doi.org/10.1016/S0079-6700(99)00019-2
  26. M. H. Jee, M. H. Lee, Y. H. Yoon, and D. H. Baik, "Synthesis and Properties of Poly(ethylene 2,6-naphthalate)/ MWNT Nanocomposites Prepared by in situ Polymerization (II)-Non-isothermal Crystallization-", Text Sci Eng, 2008, 45, 33-39.
  27. S. Y. Choi, M. H. Jee, N. J. Park, S. H. Song, K. C. Choi, and D. H. Baik, "Synthesis and Non-isothermal Crystalliztion Behavior of Poly(glycolide-co-\varepsilon-caprolactone) Block Copolymer", Text Sci Eng, 2011, 48, 51-59.
  28. A. Ziabicki, "Theoretical Analysis of Oriented and Non Isothermal Crystallization I. Phenomenological Considerations. Isothermal Crystallization Accompanied by Simultaneous Orientation or Disorientation", Colloid Polym Sci, 1974, 252, 207-222. https://doi.org/10.1007/BF01638101
  29. A. Ziabicki, "Crystallization of Polymers in Variable External Conditions. 1. General Equations", Colloid Polym Sci, 1996, 274, 209-217. https://doi.org/10.1007/BF00665637
  30. A. Ziabicki, "Crystallization of Polymers in Variable External Conditions. Effects of Cooling in the Absence of Stress and Orientation", Colloid Polym Sci, 1996, 274, 705-716 https://doi.org/10.1007/BF00654665
  31. A. Ziabicki and P. Sajkiewicz, "Crystallization of Polymers in Variable External Conditions. III: Experimental Determination of Kinetic Characteristics", Colloid Polym Sci, 1998, 276, 680-689. https://doi.org/10.1007/s003960050297
  32. M. Nagata, "Synthesis, Characterization, and Hydrolytic Degradation of Copolyesters of 3-(4-Hydroxyphenyl) Propionic Acid and p-Hydroxybenzoic Acid, Vanilic Acid, or Syringic Acid", Polym Sci, 2000, 78, 2474-2481.
  33. H. R. Kricheldorf and T. Stukenbrock, "Biodegradable, Thermotropic Copolyesters Derived from $\beta-(4-hydroxyphenyl)$ Propionic Acid", Macromol Chem Phys, 1997, 198, 3753- 3767. https://doi.org/10.1002/macp.1997.021981134

Cited by

  1. Thermal Properties and Alkaline Weight Reduction of Anionic Copolyesters/Dodecylbenzenesulfonate Blend Films vol.51, pp.1, 2014, https://doi.org/10.12772/TSE.2014.51.027
  2. Alkaline dissolution and dyeing properties of sea-island type polyethylene terephthalate ultramicrofiber knitted fabrics vol.16, pp.9, 2015, https://doi.org/10.1007/s12221-015-5250-9
  3. Synthesis of hydrophilic copolyesters and the characterization of their moisture-related cooling properties vol.16, pp.12, 2015, https://doi.org/10.1007/s12221-015-5677-z
  4. Alkali dissolution behaviour of sea-island-type polyethylene terephthalate ultramicrofibre knitted fabrics vol.130, pp.5, 2014, https://doi.org/10.1111/cote.12105