DOI QR코드

DOI QR Code

Electrostatic Immobilization of D-Xylose Isomerase to a Cation Exchanger for the Conversion of D-Xylose to D-Xylulose

D-xylose에서 D-xylulose로의 전환을 위한 D-xylose Isomerase의 정전기적 고정화

  • Hang, Nguyen Thi (Department of Genetic Engineering and Center for Human Interface Nano Technology, Sungkyunkwan University) ;
  • Kim, Sung-Gun (Department of Biomedical Science, Youngdong University) ;
  • Kweon, Dae-Hyuk (Department of Genetic Engineering and Center for Human Interface Nano Technology, Sungkyunkwan University)
  • Received : 2012.05.29
  • Accepted : 2012.06.05
  • Published : 2012.06.28

Abstract

Since D-xylose is not fermentable in Saccharomyces cerevisiae, its conversion to D-xylulose is required for its application in biotechnological industries using S. cerevisiae. In order to convert D-xylose to D-xylulose by way of an enzyme immobilized system, D-xylose isomerase (XI) of Escherichia coli was fused with 10-arginine tag (R10) at its C-terminus for the simple purification and immobilization process using a cation exchanger. The fusion protein XIR10 was overexpressed in recombinant E. coli and purified to a high purity by a single step of cation exchange chromatography. The purified XIR10 was immobilized to a cation exchanger via the electrostatic interaction with the C-terminal 10-arginine tag. Both the free and immobilized XIR10 exhibited similar XI activities at various pH values and temperatures, indicating that the immobilization to the cation exchanger has a small effect on the enzymatic function of XIR10. Under optimized conditions for the immobilized XIR10, D-xylose was isomerized to D-xylulose with a conversion yield of 25%. Therefore, the results of this study clearly demonstrate that the electrostatic immobilization of XIR10 via the interaction between the 10-arginine tag and a cation exchanger is an applicable form of the conversion of D-xylose to D-xylulose.

D-Xylose는 Saccharomyces cerevisiae에서 기질로 이용될 수 없어 S. cerevisiae가 이용 가능한 D-xylulose로의 전환이 요구된다. 효소고정화 시스템을 통한 D-xylose로부터 D-xylulose로의 전환을 위해 대장균의 D-xylose 이성화효소(XI)의 카르복시 말단에 양이온 교환수지를 이용한 단순 정제 및 고정화가 가능하도록 10-arginine tag(R10)을 융합하였다. 융합단백질인 XIR10은 재조합 대장균에서 과잉발현되었고 단일 단계의 양이온 교환 크로마토그라피를 통하여 고순도로 정제되었다. 정제된 XIR10은 카르복시 말단의 10-arginine tag과의 정전기적 상호작용을 통하여 양이온 교환수지에 고정화되었다. 고정화 및 비고정화된 XIR10은 넓은 범위의 pH 및 온도에서 비슷한 D-xylose 이성화효소 활성을 보였다. 이 결과는 양이온 교환수지로의 고정화는 XIR10의 효소적 기능에 영향을 주지 않는다는 것을 나타낸다. 고정화된 XIR10의 최적화된 조건에서 D-xylose의 25%는 D-xylulose로 이성화되었다. 본 연구의 결과들은 10-arginine tag과 양이온 교환수지간의 상호작용을 통해 정전기적 고정화된 XIR10이 D-xylose로부터 D-xylulose로의 전환에 응용 가능하다는 것을 명확하게 보여주었다.

Keywords

References

  1. Brewer, S. J. and J. M. Sassenfeld. 1985. The purification of recombinant proteins using C-terminal polyarginine fusions. Trends Biotechnol. 3: 119-122. https://doi.org/10.1016/0167-7799(85)90126-X
  2. Chandrakant, P. and V. S. Bisaria. 2000. Application of a compatible xylose isomerase in simultaneous bioconversion of glucose and xylose to ethanol. Biotechnol. Bioprocess Eng. 5: 32-39. https://doi.org/10.1007/BF02932350
  3. Farber, G. K., A. Glasfeld, G. Tiraby, D. Ringe, and G. A. Petsko. 1989. Crystallographic studies of the mechanism of xylose isomerase. Biochemistry 28: 7289-7297. https://doi.org/10.1021/bi00444a022
  4. Gong, C., L. D. McCracken, and G. T. Tsao. 1981. Direct fermentation of D-xylose to ethanol by a xylose-fermentating yeast mutant, Candida sp. XF 217. Biotechnol. Lett. 3: 245-250. https://doi.org/10.1007/BF00154652
  5. Jokela, J., O. Pastinen, and M. Leisola. 2002. Isomerization of pentose and hexose sugars by an enzyme reactor packed with cross-linked xylose isomerase crystals. Enzyme Microb. Technol. 31: 67-76. https://doi.org/10.1016/S0141-0229(02)00074-1
  6. Kim, S. G., J. A. Kim, H. A. Yu, D. H. Lee, D. H. Kweon, and J. H. Seo. 2006. Application of poly-arginine fused minichaperone to renaturation of cyclodextrin glycosyltransferase expressed in recombinant Escherichia coli. Enzyme Microb. Technol. 39: 459-465. https://doi.org/10.1016/j.enzmictec.2005.11.044
  7. Kim, S. G., S. Y. Shin, Y. C. Park, C. S. Shin, and J. H. Seo. 2011. Production and solid-phase refolding of human glucagon-like peptide-1 using recombinant Escherichia coli. Protein Expr. Purif. 78: 197-203. https://doi.org/10.1016/j.pep.2011.03.008
  8. Korndorfer, I. P., W. D. Fessner, and B. W. Matthews. 2000. The structure of rhamnose isomerase from Escherichia coli and its relation with xylose isomerase illustrates a change between inter and intra-subunit complementation during evolution. J. Mol. Biol. 300: 917-933. https://doi.org/10.1006/jmbi.2000.3896
  9. Kweon, D. H., S. G. Kim, N. S. Han, J. H. Lee, K. M. Chung, and J. H. Seo. 2005. Immobilization of Bacillus macerans cyclodextrin glycosyltransferase fused with poly-lysine using cation exchanger. Enzyme Microb. Technol. 36: 373-615. https://doi.org/10.1016/S0141-0229(05)00027-X
  10. Kweon, D. H., S. G. Kim, and J. H. Seo. 2004. Purification and refolding of cyclodextrin glycosyltransferase expressed from recombinant Escherichia coli. Journal of Inclusion Phenomena and Macrocyclic Chemistry 50: 37-41. https://doi.org/10.1007/s10847-003-8836-6
  11. Kweon, D. H., D. H. Lee, N. S. Han, C. S. Rha, and J. H. Seo. 2002. Characterization of polycationic amino acids fusion systems for ion-exchange purification of cyclodextrin glycosyltransferase from recombinant Escherichia coli. Biotechnol. Prog. 18: 303-308. https://doi.org/10.1021/bp010151l
  12. Lee, D. H., S. G. Kim, D. H. Kweon, and J. H. Seo. 2009. Folding machineries displayed on a cation-exchanger for the concerted refolding of cysteine-or proline-rich proteins. BMC Biotechnol. 9: 27. https://doi.org/10.1186/1472-6750-9-27
  13. Lehmacher, A. and H. Bisswanger. 1990. Isolation and characterization of an extremely thermostable D-xylose isomerase from Thermus aquaticus HB 8. J. Gen. Microbiol. 136: 679-686. https://doi.org/10.1099/00221287-136-4-679
  14. Mateo, C., J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, and R. Fernandez-Lafuente. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40: 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
  15. Nock, S., J. Spudich, and P. Wagner. 1997. Reversible, site-specific immobilization of polyarginine-tagged fusion proteins on mica surfaces. FEBS Lett. 414: 233-238. https://doi.org/10.1016/S0014-5793(97)01040-5
  16. Park, S. J., K. Ryu, C. W. Suh, Y. G. Chai, O. B. Kwon, S. K. Park, and E. K. Lee. 2002. Solid-phase refolding of polylysine tagged fusion protein of hEGF and angiogenin. Biotechnol. Bioprocess Eng. 7: 1-5. https://doi.org/10.1007/BF02935871
  17. Pronk, J., A. Bakker, H. Van Dam, A. Straathof, W. Scheffers, and J. Van Dijken. 1988. Preparation of D-xylulose from Dxylose. Enzyme Microb. Technol. 10: 537-542. https://doi.org/10.1016/0141-0229(88)90046-4
  18. van Maris, A., A. Winkler, M. Kuyper, W. de Laat, J. van Dijken, and J. Pronk. 2007. Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Biofuels 108: 179-204.

Cited by

  1. Amination of enzymes to improve biocatalyst performance: coupling genetic modification and physicochemical tools vol.4, pp.72, 2014, https://doi.org/10.1039/c4ra04625k