References
- Beunink, J., M. Schedel, and U. Steiner. 2000. Osmotically controlled fermentation process for the preparation of acarbose. U. S. Patent 6,130,072.
-
Bowers, S. G., T. Mahmud, and H. G. Floss. 2002. Biosynthetic studies on the -
${\alpha}$ -glucosidase inhibitor acarbose: The chemical synthesis of dTDP-4-amino-4,6-dideoxy-${\alpha}$ -D-glucose. Carbohydr. Res. 337: 297-304. https://doi.org/10.1016/S0008-6215(01)00323-8 - Brunkhorst, C. and E. Schneider. 2005. Characterization of maltose and maltotriose transport in the acarbose-producing bacterium Actinoplanes sp. Res. Microbiol. 156: 851-857. https://doi.org/10.1016/j.resmic.2005.03.008
- Choi, B. T. and C. S. Shin. 2003. Reduced formation of byproduct component C in acarbose fermentation by Actinoplanes sp. CKD485-16. Biotechnol. Prog. 19: 1677-1682. https://doi.org/10.1021/bp034079y
- Feng, Z.-H., Y.-S. Wang, and Y.-G. Zheng. 2011. A new microtiter plate-based screening method for microorganisms producing alpha-amylase inhibitors. Biotechnol. Bioprocess Eng. 16: 894-900. https://doi.org/10.1007/s12257-011-0033-7
- Flatt, P. M. and T. Mahmud. 2007. Biosynthesis of aminoglycoside antibiotics and related compounds. Nat. Prod. Rep. 24: 358-392. https://doi.org/10.1039/b603816f
- Guzman, S., I. Ramos, E. Moreno, B. Ruiz, R. Rodriguez-Sanoja, L. Escalante, et al. 2005. Sugar uptake and sensitivity to carbon catabolite regulation in Streptomyces peucetius var. caesius. Appl. Microbiol. Biotechnol. 69: 200-206. https://doi.org/10.1007/s00253-005-1965-7
- Hodgson, D. A. 1982. Glucose repression of carbon source uptake and metabolism in Streptomyces coelicolor A3(2) and its perturbation in mutants resistant to 2-deoxyglucose. J. Gen. Microbiol. 128: 2417-2430.
- Huh, J. H., D. J. Kim, X. Q. Zhao, M. Li, Y. Y. Jo, T. M. Yoon, et al. 2004. Widespread activation of antibiotic biosynthesis by S-adenosylmethionine in streptomycetes. FEMS Microbiol. Lett. 238: 439-447. https://doi.org/10.1111/j.1574-6968.2004.tb09787.x
- Jiang, W., Y. T. Sheng, Y. M. Cai, M. J. Guo, and J. Chu. 2010. Comprehensive effects of maltose concentration and medium osmotic pressure on acarbose in Actinoplanes sp. fermentation. Chin. J. Pharm. 41: 178-182. [In Chinese]
- Kim, D. J., J. H. Huh, Y. Y. Yang, C. M. Kang, I. H. Lee, C. G, Hyun, et al. 2003. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185: 592-600. https://doi.org/10.1128/JB.185.2.592-600.2003
-
Lee, S., B. Sauerbrei, J. Niggemann, and E. Egelkrout. 1997. Biosynthetic studies on the
${\alpha}$ -glucosidase inhibitor acarbose in Actinoplanes sp.: Source of the maltose unit. J. Antibiot. 50: 954-960. https://doi.org/10.7164/antibiotics.50.954 - Li, K. T., S. J. Wie, L. Huang, and X. Cheng. 2011. An effective and simplified scale-up strategy for acarbose fermentation based on the carbon control. World J. Microbiol. Biotechnol. [In Press]
- Mahmud, T., S. Lee, and H. G. Floss. 2001. The biosynthesis of acarbose and validamycin. Chem. Rec. 1: 300-310. https://doi.org/10.1002/tcr.1015
- Okamoto, S., A. Lezhava, T. Hosaka, Y. Okamoto-Hosoya, and K. Ochi. 2003. Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J. Bacteriol. 185: 601-609. https://doi.org/10.1128/JB.185.2.601-609.2003
- Rockser, Y. and U. F. Wehmeier. 2009. The gac-gene cluster for the production of acarbose from Streptomyces glaucescens GLA.O: Identification, isolation and characterization. J. Biotechnol. 140: 114-123. https://doi.org/10.1016/j.jbiotec.2008.10.016
- Saito, N., K. Kurosawa, J. Xu, S. Okamoto, and K. Ochi. 2003. Effect of S-adenosylmethionine on antibiotic production in Streptomyces griseus and Streptomyces griseoflavus. Actinomycetologica 17: 47-49. https://doi.org/10.3209/saj.17_47
- Sanchez, S., A. Chavez, A. Forero, Y. Garcia-Huante, A. Romero, M. Sanchez, et al. 2010. Carbon source regulation of antibiotic production. J. Antibiot. 63: 442-459. https://doi.org/10.1038/ja.2010.78
- Shin, S. K., D. Xu, H. J. Kwon, and J. W. Suh. 2006. S-Adenosylmethionine activates adpA transcription and promotes streptomycin biosynthesis in Streptomyces griseus. FEMS Microbiol. Lett. 259: 53-59. https://doi.org/10.1111/j.1574-6968.2006.00246.x
- Shin, S. K., H. S. Park, H. J. Kwon, H. J. Yoon, and J. W. Suh. 2007. Genetic characterization of two S-adenosylmethionine-induced ABC transporters reveals their roles in modulations of secondary metabolism and sporulation in Streptomyces coelicolor M145. J. Microbiol. Biotechnol. 17: 1818-1825.
- Wang, Y.-J., L.-L. Liu, Y.-S. Wang, Y.-P. Xue, Y.-G. Zheng, and Y.-C. Shen. 2012. Actinoplanes utahensis ZJB-08196 fed-batch fermentation at elevated osmolality for enhancing acarbose production. Bioresour. Technol. 103: 337-342. https://doi.org/10.1016/j.biortech.2011.09.121
- Wang, Y.-J., L.-L. Liu, Z.-H. Feng, Z.-Q. Liu, and Y.-G. Zheng. 2011. Optimization of media composition and culture conditions for acarbose production by Actinoplanes utahensis ZJB-08196. World J. Microbiol. Biotechnol. 27: 2759-2766. https://doi.org/10.1007/s11274-011-0751-1
- Wehmeier, U. F. and W. Piepersberg. 2004. Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose. Appl. Microbiol. Biotechnol.63: 613-625. https://doi.org/10.1007/s00253-003-1477-2
- Zhang, C. S., M. Podeschwa, O. Block, H. J. Altenbach, W. Piepersberg, and U. F. Wehmeier. 2003. Identification of a 1-epi-valienol 7-kinase activity in the producer of acarbose, Actinoplanes sp. SE50/110. FEMS Lett. 540: 53-57.
- Zhao, X. Q., B. Gust, and L. Heide. 2010. S-Adenosylmethionine (SAM) and antibiotic biosynthesis: Effect of external addition of SAM and of overexpression of SAM biosynthesis genes in novobiocin production in Streptomyces. Arch. Microbiol. 192: 289-297. https://doi.org/10.1007/s00203-010-0548-x
- Zhao, X. Q., Y. Y. Jin, H. J. Kwon, Y. Y. Yang, and J. W. Suh. 2006. S-Adenosylmethionine (SAM) regulates antibiotic biosynthesis in Streptomyces spp. in a mode independent of its role as a methyl donor. J. Microbiol. Biotechnol. 16: 927-932.
Cited by
- Enhanced Production of Acarbose and Concurrently Reduced Formation of Impurity C by Addition of Validamine in Fermentation of Actinoplanes utahensis ZJB-08196 vol.2013, pp.None, 2012, https://doi.org/10.1155/2013/705418
- New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters vol.97, pp.1, 2012, https://doi.org/10.1007/s00253-012-4551-9
- Reconstruction and in silico analysis of an Actinoplanes sp. SE50/110 genome-scale metabolic model for acarbose production vol.6, pp.None, 2012, https://doi.org/10.3389/fmicb.2015.00632
- Improving acarbose production and eliminating the by-product component C with an efficient genetic manipulation system of Actinoplanes sp. SE50/110 vol.2, pp.4, 2012, https://doi.org/10.1016/j.synbio.2017.11.005
- Enhanced acarbose production by Streptomyces M37 using a two-stage fermentation strategy vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0166985
- A severe leakage of intermediates to shunt products in acarbose biosynthesis vol.11, pp.1, 2012, https://doi.org/10.1038/s41467-020-15234-8