References
- Bockle, B., B. Galunsky, and R. Müller. 1995. Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Appl. Environ. Microbiol. 61: 3705-3710.
- Bolivar, J. M., C. Mateo, V. Grazu, A. V. Carrascosa, B. C. Pessela, and J. M. Guisan. 2010. Heterofunctional supports for one-step purification, immobilization and stabilization of large-multimeric enzymes: Amino-glyoxyl versus amino-epoxy supports. Process Biochem. 45: 1692-1698. https://doi.org/10.1016/j.procbio.2010.07.001
- Box, G. E. P., W. G. Hunter, and J. S. Hunter. 1978. Statistics for Experiments. Wiley, New York.
- Brandelli, A. 2005. Hydrolysis of native proteins by a keratinolytic protease of Chryseobacterium sp. Ann. Microbiol. 55: 47-50.
- Brandelli, A. 2008. Bacterial keratinases: Useful enzymes for bioprocessing agricultural wastes and beyond. Food Bioprocess Technol. 1: 105-116. https://doi.org/10.1007/s11947-007-0025-y
- Brandelli, A., D. J. Daroit, and A. Riffel. 2010. Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 85: 1735-1750. https://doi.org/10.1007/s00253-009-2398-5
- Brugnerotto, J., J. Lizardi, F. M. Goycoolea, W. Arguelles-Monal, J. Desbrières, and M. Rinaudo. 2001. An infrared investigation in relation with chitin and chitosan characterization. Polymer 42: 3569-3580. https://doi.org/10.1016/S0032-3861(00)00713-8
- Cano, T., N. D. Offringa, and L. D. Willson. 2005. Competitive ion-exchange adsorption of proteins: Competitive isotherms with controlled competitor concentration. J. Chromatogr. A 1079: 116-126. https://doi.org/10.1016/j.chroma.2005.03.120
- Cao, L. 2005. Immobilised enzymes: Science or art? Curr. Opin. Chem. Biol. 9: 217-226. https://doi.org/10.1016/j.cbpa.2005.02.014
- Casarin, F., F. Cladera-Olivera, and A. Brandelli. 2008. Use of poultry byproduct for production of keratinolytic enzymes. Food Bioprocess Technol. 1: 301-305. https://doi.org/10.1007/s11947-008-0091-9
- Cetinus, S. A. and H. N. Oztop. 2000. Immobilization of catalase on chitosan film. Enzyme Microb. Technol. 26: 497-501. https://doi.org/10.1016/S0141-0229(99)00189-1
- Chang, M. Y. and R. S. Juang. 2005. Activities, stabilities, and reaction kinetics of three free and chitosan-clay composite immobilized enzymes. Enzyme Microb. Technol. 36: 75-82. https://doi.org/10.1016/j.enzmictec.2004.06.013
- Cladera-Olivera, F., G. R. Caron, and A. Brandelli. 2004. Bacteriocin production by Bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochem. Eng. J. 21: 53-58. https://doi.org/10.1016/j.bej.2004.05.002
-
Dwevedi, A. and A. M. Kayastha. 2009. Optimal immobilization of
${\beta}$ -galactosidase from Pea (PsBGAL) onto Sephadex and chitosan beads using surface methodology and its application. Bioresour. Technol. 100: 2667-2675. https://doi.org/10.1016/j.biortech.2008.12.048 - Farag, A. M. and M. A. Hassan. 2004. Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme Microb. Technol. 34: 85-93. https://doi.org/10.1016/j.enzmictec.2003.09.002
- Hernandez, K. and R. Fernandez-Lafuente. 2011. Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalysis and biosensor performance. Enzyme Microb. Technol. 48: 107-122. https://doi.org/10.1016/j.enzmictec.2010.10.003
- Isgrove, S. H., R. J. H. Williams, G. W. Niven, and A. T. Andrews. 2001. Enzyme immobilization on nylon-optimization and the steps used to prevent enzyme leakage from the support. Enzyme Microb. Technol. 28: 225-232. https://doi.org/10.1016/S0141-0229(00)00312-4
- Itoyama, K., S. Tokura, and T. Hayashi. 1994. Lipoprotein lipase immobilization onto porous chitosan beads. Biotechnol. Progr. 10: 225-229. https://doi.org/10.1021/bp00026a013
- Kannan, K. and R. V. Jasra. 2009. Immobilization of alkaline serine endopeptidase from Bacillus licheniformis on SBA-15 and MCF by surface covalent binding. J. Mol. Catal. B Enzym. 56: 34-40. https://doi.org/10.1016/j.molcatb.2008.04.007
- Konwarh, R., N. Karak, S. K. Rai, and A. K. Mukherjee. 2009. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnology 20: 225107. https://doi.org/10.1088/0957-4484/20/22/225107
- Krajewska, B. 2004. Applications of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzyme Microb. Technol. 35: 126-139. https://doi.org/10.1016/j.enzmictec.2003.12.013
- Kumar, S., A. Dwevedi, and A. M. Kayastha. 2008. Immobilization of soybean (Glycine max) urease on alginate and chitosan beads showing improved stability: Analytical applications. J. Mol. Catal. B Enzym. 58: 138-145.
- Lowry, O. H., N. J. Rosembrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 267-275.
- Mitsuiki, S., M. Ichikawa, T. Oka, M. Sakai, Y. Moriyama, Y. Sameshima, M. Goto, and K. Furukawa. 2004. Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Enzyme Microb. Technol. 34: 482-489. https://doi.org/10.1016/j.enzmictec.2003.12.011
- Moehlenbrock, M. J. and S. D. Minteer. 2011. Introduction to the field of enzyme immobilization and stabilization. Methods Mol. Biol. 679: 1-7.
- Monzo, A., G. K. Bonn, and A. Guttman. 2007. Lectin-immobilization strategies for affinity purification and separation of glycoconjugates. Trends Anal. Chem. 26: 423-432. https://doi.org/10.1016/j.trac.2007.01.018
- Riffel, A., F. S. Lucas, P. Heeb, and A. Brandelli. 2003. Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch. Microbiol. 179: 258-265.
- Riffel, A., A. Brandelli, C. M. Bellato, G. H. M. F. Souza, M. N. Eberlin, and F. C. A. Tavares. 2007. Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kr6. J. Biotechnol. 128: 693-703. https://doi.org/10.1016/j.jbiotec.2006.11.007
- Riffel, A., D. J. Daroit, and A. Brandelli. 2010. Nutritional regulation of protease production by the feather-degrading bacterium Chryseobacterium sp. kr6. New Biotechnol. 28: 153-157.
- Silveira, S. T., F. Casarin, S. Gemelli, and A. Brandelli. 2010. Thermodynamics and kinetics of thermal inactivation of a keratinase from Chryseobacterium sp. strain kr6. Appl. Biochem. Biotechnol. 162: 548-560. https://doi.org/10.1007/s12010-009-8835-1
- Singh, A. N., S. Singh, N. Suthar, and C. K. Dubey. 2011. Glutaraldehyde-activated chitosan matrix for immobilization of a novel cysteine protease, Procerain B. J. Agric. Food Chem. 59: 6256-6262. https://doi.org/10.1021/jf200472x
- Tang, Z. X., J. Q. Qian, and L. E. Shi. 2006. Characterizations of immobilized neutral proteinase on chitosan nano-particles. Process Biochem. 41: 1193-1197. https://doi.org/10.1016/j.procbio.2005.11.015
- Wang, J. J., H. E. Swaisgood, and J. C. H. Shih. 2003. Production and characterization of bio-immobilized keratinase in proteolysis and keratinolysis. Enzyme Microb. Technol. 32: 812-819. https://doi.org/10.1016/S0141-0229(03)00060-7
- Wang, S. L., W. T. Hsu, T. W. Liang, Y. H. Yen, and C. L. Wang. 2008. Purification and characterization of three novel keratinolytic metalloproteases from Chryseobacterium indologenes TKU014 in a shrimp shell powder medium. Bioresour. Technol. 99: 5679-5686. https://doi.org/10.1016/j.biortech.2007.10.024
- Wang, M., W. Qi, Q. Yu, R. Su, and Z. He. 2010. Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalysis and biosensor performance. Biochem. Eng. J. 52: 168-174. https://doi.org/10.1016/j.bej.2010.08.003
Cited by
- Biodesulfurization of Dibenzothiophene and Its Derivatives Using Resting and Immobilized Cells of Sphingomonas subarctica T7b vol.23, pp.4, 2012, https://doi.org/10.4014/jmb.1207.07070
- Microbial decomposition of keratin in nature—a new hypothesis of industrial relevance vol.100, pp.5, 2012, https://doi.org/10.1007/s00253-015-7262-1
- Community-intrinsic properties enhance keratin degradation from bacterial consortia vol.15, pp.1, 2012, https://doi.org/10.1371/journal.pone.0228108