DOI QR코드

DOI QR Code

Immobilization of Keratinolytic Metalloprotease from Chryseobacterium sp. Strain kr6 on Glutaraldehyde-Activated Chitosan

  • Silveira, Silvana T. (Laboratory of Biochemistry and Applied Microbiology, Department of Food Science, Universidade Federal do Rio Grande do Sul) ;
  • Gemelli, Sabrine (Laboratory of Biochemistry and Applied Microbiology, Department of Food Science, Universidade Federal do Rio Grande do Sul) ;
  • Segalin, Jeferson (Protein Chemistry and Mass Spectrometry Unit, Centre of Biotechnology, Universidade Federal do Rio Grande do Sul) ;
  • Brandelli, Adriano (Laboratory of Biochemistry and Applied Microbiology, Department of Food Science, Universidade Federal do Rio Grande do Sul)
  • Received : 2011.11.18
  • Accepted : 2012.02.19
  • Published : 2012.06.28

Abstract

Keratinases are exciting keratin-degrading enzymes; however, there have been relatively few studies on their immobilization. A keratinolytic protease from Chryseobacterium sp. kr6 was purified and its partial sequence determined using mass spectrometry. No significant homology to other microbial peptides in the NCBI database was observed. Certain parameters for immobilization of the purified keratinase on chitosan beads were investigated. The production of the chitosan beads was optimized using factorial design and surface response techniques. The optimum chitosan bead production for protease immobilization was a 20 g/l chitosan solution in acetic acid [1.5% (v/v)], glutaraldehyde ranging from 34 g to 56 g/l, and an activation time between 6 and 10 h. Under these conditions, above 80% of the enzyme was immobilized on the support. The behavior of the keratinase loading on the chitosan beads surface was well described using the Langmuir model. The maximum capacity of the support ($q_m$) and dissociation constant ($K_d$) were estimated as 58.8 U/g and 0.245 U/ml, respectively. The thermal stability of the immobilized enzyme was also improved around 2-fold, when compared with that of the free enzyme, after 30 min at $65^{\circ}C$. In addition, the activity of the immobilized enzyme remained at 63.4% after it was reused five times. Thus, the immobilized enzyme exhibited an improved thermal stability and remained active after several uses.

Keywords

References

  1. Bockle, B., B. Galunsky, and R. Müller. 1995. Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Appl. Environ. Microbiol. 61: 3705-3710.
  2. Bolivar, J. M., C. Mateo, V. Grazu, A. V. Carrascosa, B. C. Pessela, and J. M. Guisan. 2010. Heterofunctional supports for one-step purification, immobilization and stabilization of large-multimeric enzymes: Amino-glyoxyl versus amino-epoxy supports. Process Biochem. 45: 1692-1698. https://doi.org/10.1016/j.procbio.2010.07.001
  3. Box, G. E. P., W. G. Hunter, and J. S. Hunter. 1978. Statistics for Experiments. Wiley, New York.
  4. Brandelli, A. 2005. Hydrolysis of native proteins by a keratinolytic protease of Chryseobacterium sp. Ann. Microbiol. 55: 47-50.
  5. Brandelli, A. 2008. Bacterial keratinases: Useful enzymes for bioprocessing agricultural wastes and beyond. Food Bioprocess Technol. 1: 105-116. https://doi.org/10.1007/s11947-007-0025-y
  6. Brandelli, A., D. J. Daroit, and A. Riffel. 2010. Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 85: 1735-1750. https://doi.org/10.1007/s00253-009-2398-5
  7. Brugnerotto, J., J. Lizardi, F. M. Goycoolea, W. Arguelles-Monal, J. Desbrières, and M. Rinaudo. 2001. An infrared investigation in relation with chitin and chitosan characterization. Polymer 42: 3569-3580. https://doi.org/10.1016/S0032-3861(00)00713-8
  8. Cano, T., N. D. Offringa, and L. D. Willson. 2005. Competitive ion-exchange adsorption of proteins: Competitive isotherms with controlled competitor concentration. J. Chromatogr. A 1079: 116-126. https://doi.org/10.1016/j.chroma.2005.03.120
  9. Cao, L. 2005. Immobilised enzymes: Science or art? Curr. Opin. Chem. Biol. 9: 217-226. https://doi.org/10.1016/j.cbpa.2005.02.014
  10. Casarin, F., F. Cladera-Olivera, and A. Brandelli. 2008. Use of poultry byproduct for production of keratinolytic enzymes. Food Bioprocess Technol. 1: 301-305. https://doi.org/10.1007/s11947-008-0091-9
  11. Cetinus, S. A. and H. N. Oztop. 2000. Immobilization of catalase on chitosan film. Enzyme Microb. Technol. 26: 497-501. https://doi.org/10.1016/S0141-0229(99)00189-1
  12. Chang, M. Y. and R. S. Juang. 2005. Activities, stabilities, and reaction kinetics of three free and chitosan-clay composite immobilized enzymes. Enzyme Microb. Technol. 36: 75-82. https://doi.org/10.1016/j.enzmictec.2004.06.013
  13. Cladera-Olivera, F., G. R. Caron, and A. Brandelli. 2004. Bacteriocin production by Bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochem. Eng. J. 21: 53-58. https://doi.org/10.1016/j.bej.2004.05.002
  14. Dwevedi, A. and A. M. Kayastha. 2009. Optimal immobilization of ${\beta}$-galactosidase from Pea (PsBGAL) onto Sephadex and chitosan beads using surface methodology and its application. Bioresour. Technol. 100: 2667-2675. https://doi.org/10.1016/j.biortech.2008.12.048
  15. Farag, A. M. and M. A. Hassan. 2004. Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme Microb. Technol. 34: 85-93. https://doi.org/10.1016/j.enzmictec.2003.09.002
  16. Hernandez, K. and R. Fernandez-Lafuente. 2011. Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalysis and biosensor performance. Enzyme Microb. Technol. 48: 107-122. https://doi.org/10.1016/j.enzmictec.2010.10.003
  17. Isgrove, S. H., R. J. H. Williams, G. W. Niven, and A. T. Andrews. 2001. Enzyme immobilization on nylon-optimization and the steps used to prevent enzyme leakage from the support. Enzyme Microb. Technol. 28: 225-232. https://doi.org/10.1016/S0141-0229(00)00312-4
  18. Itoyama, K., S. Tokura, and T. Hayashi. 1994. Lipoprotein lipase immobilization onto porous chitosan beads. Biotechnol. Progr. 10: 225-229. https://doi.org/10.1021/bp00026a013
  19. Kannan, K. and R. V. Jasra. 2009. Immobilization of alkaline serine endopeptidase from Bacillus licheniformis on SBA-15 and MCF by surface covalent binding. J. Mol. Catal. B Enzym. 56: 34-40. https://doi.org/10.1016/j.molcatb.2008.04.007
  20. Konwarh, R., N. Karak, S. K. Rai, and A. K. Mukherjee. 2009. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnology 20: 225107. https://doi.org/10.1088/0957-4484/20/22/225107
  21. Krajewska, B. 2004. Applications of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzyme Microb. Technol. 35: 126-139. https://doi.org/10.1016/j.enzmictec.2003.12.013
  22. Kumar, S., A. Dwevedi, and A. M. Kayastha. 2008. Immobilization of soybean (Glycine max) urease on alginate and chitosan beads showing improved stability: Analytical applications. J. Mol. Catal. B Enzym. 58: 138-145.
  23. Lowry, O. H., N. J. Rosembrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 267-275.
  24. Mitsuiki, S., M. Ichikawa, T. Oka, M. Sakai, Y. Moriyama, Y. Sameshima, M. Goto, and K. Furukawa. 2004. Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Enzyme Microb. Technol. 34: 482-489. https://doi.org/10.1016/j.enzmictec.2003.12.011
  25. Moehlenbrock, M. J. and S. D. Minteer. 2011. Introduction to the field of enzyme immobilization and stabilization. Methods Mol. Biol. 679: 1-7.
  26. Monzo, A., G. K. Bonn, and A. Guttman. 2007. Lectin-immobilization strategies for affinity purification and separation of glycoconjugates. Trends Anal. Chem. 26: 423-432. https://doi.org/10.1016/j.trac.2007.01.018
  27. Riffel, A., F. S. Lucas, P. Heeb, and A. Brandelli. 2003. Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch. Microbiol. 179: 258-265.
  28. Riffel, A., A. Brandelli, C. M. Bellato, G. H. M. F. Souza, M. N. Eberlin, and F. C. A. Tavares. 2007. Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kr6. J. Biotechnol. 128: 693-703. https://doi.org/10.1016/j.jbiotec.2006.11.007
  29. Riffel, A., D. J. Daroit, and A. Brandelli. 2010. Nutritional regulation of protease production by the feather-degrading bacterium Chryseobacterium sp. kr6. New Biotechnol. 28: 153-157.
  30. Silveira, S. T., F. Casarin, S. Gemelli, and A. Brandelli. 2010. Thermodynamics and kinetics of thermal inactivation of a keratinase from Chryseobacterium sp. strain kr6. Appl. Biochem. Biotechnol. 162: 548-560. https://doi.org/10.1007/s12010-009-8835-1
  31. Singh, A. N., S. Singh, N. Suthar, and C. K. Dubey. 2011. Glutaraldehyde-activated chitosan matrix for immobilization of a novel cysteine protease, Procerain B. J. Agric. Food Chem. 59: 6256-6262. https://doi.org/10.1021/jf200472x
  32. Tang, Z. X., J. Q. Qian, and L. E. Shi. 2006. Characterizations of immobilized neutral proteinase on chitosan nano-particles. Process Biochem. 41: 1193-1197. https://doi.org/10.1016/j.procbio.2005.11.015
  33. Wang, J. J., H. E. Swaisgood, and J. C. H. Shih. 2003. Production and characterization of bio-immobilized keratinase in proteolysis and keratinolysis. Enzyme Microb. Technol. 32: 812-819. https://doi.org/10.1016/S0141-0229(03)00060-7
  34. Wang, S. L., W. T. Hsu, T. W. Liang, Y. H. Yen, and C. L. Wang. 2008. Purification and characterization of three novel keratinolytic metalloproteases from Chryseobacterium indologenes TKU014 in a shrimp shell powder medium. Bioresour. Technol. 99: 5679-5686. https://doi.org/10.1016/j.biortech.2007.10.024
  35. Wang, M., W. Qi, Q. Yu, R. Su, and Z. He. 2010. Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalysis and biosensor performance. Biochem. Eng. J. 52: 168-174. https://doi.org/10.1016/j.bej.2010.08.003

Cited by

  1. Biodesulfurization of Dibenzothiophene and Its Derivatives Using Resting and Immobilized Cells of Sphingomonas subarctica T7b vol.23, pp.4, 2012, https://doi.org/10.4014/jmb.1207.07070
  2. Microbial decomposition of keratin in nature—a new hypothesis of industrial relevance vol.100, pp.5, 2012, https://doi.org/10.1007/s00253-015-7262-1
  3. Community-intrinsic properties enhance keratin degradation from bacterial consortia vol.15, pp.1, 2012, https://doi.org/10.1371/journal.pone.0228108