DOI QR코드

DOI QR Code

Computational Tridimensional Protein Modeling of Cry1Ab19 Toxin from Bacillus thuringiensis BtX-2

  • Kashyap, S. (National Bureau of Agriculturally Important Microorganisms (ICAR)) ;
  • Singh, B.D. (School of Biotechnology, Faculty of Science, Banaras Hindu University) ;
  • Amla, D.V. (Molecular Biology and Genetic Engineering Division, National Botanical Research Institute)
  • Received : 2011.06.15
  • Accepted : 2012.02.02
  • Published : 2012.06.28

Abstract

We report the computational structural simulation of the Cry1Ab19 toxin molecule from B. thuringiensis BtX-2 based on the structure of Cry1Aa1 deduced by x-ray diffraction. Validation results showed that 93.5% of modeled residues are folded in a favorable orientation with a total energy Z-score of -8.32, and the constructed model has an RMSD of only $1.13{\AA}$. The major differences in the presented model are longer loop lengths and shortened sheet components. The overall result supports the hierarchical three-domain structural hypothesis of Cry toxins and will help in better understanding the structural variation within the Cry toxin family along with facilitating the design of domain-swapping experiments aimed at improving the toxicity of native toxins.

Keywords

References

  1. Boonserm, P., M. Mo, C. Angsuthanasombat, and J. Lescar. 2006. Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. J. Bacteriol. 188: 3391-3401. https://doi.org/10.1128/JB.188.9.3391-3401.2006
  2. Boonserm, P., P. Davis, D. J. Ellar, and J. Li. 2005. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J. Mol. Biol. 348: 363-382. https://doi.org/10.1016/j.jmb.2005.02.013
  3. Chen, X. J., M. K. Lee, and D. H. Dean. 1993. Site-directed mutations in a highly conserved region of Bacillus thuringiensis ${\delta}$-endotoxin affect inhibition of short circuit current across Bombyx mori midgets. Proc. Natl. Acad. Sci. USA 90: 9041-9045. https://doi.org/10.1073/pnas.90.19.9041
  4. Derbyshire, D. J., D. J. Ellar, and J. Li. 2001. Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Crystallogr. D 57: 1938-1944. https://doi.org/10.1107/S090744490101040X
  5. Galitsky, N., V. Cody, A. Wojtczak, D. Ghosh, J. R. Luft, W. Pangborn, and L. English. 2001. Structure of the insecticidal bacterial ${\delta}$-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr. D 57: 1101-1109. https://doi.org/10.1107/S0907444901008186
  6. Gazit, E., P. La Rocca, M. S. P. Sansom, and Y. Shai. 1998. The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis ${\delta}$-endotoxin are consistent with an "umbrella-like" structure of the pore. Proc. Natl. Acad. Sci. USA 95: 12289-12294. https://doi.org/10.1073/pnas.95.21.12289
  7. Gutierrez, P., O. Alzate, and S. A. Orduz. 2001. A theoretical model of the tridimensional structure of Bacillus thuringiensis subsp. medellin Cry11Bb toxin deduced by homology modeling. Mem. Inst. Oswaldo Cruz 96: 357-364.
  8. Hofmann, C., H. Vanderbruggen, H. Hofte, and H. Van Mellaert. 1988. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midgets. Proc. Natl. Acad. Sci. USA 85: 7844-7848. https://doi.org/10.1073/pnas.85.21.7844
  9. Knowles, B. H. and D. J. Ellar. 1987. Colloid osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis delta-endotoxins with different insect specificities. Biochim. Biophys. Acta 924: 509-518. https://doi.org/10.1016/0304-4165(87)90167-X
  10. Kumar, A. S. M. and A. I. Aronson. 1999. Analysis of mutations in the pore-forming region essential for insecticidal activity of a Bacillus thuringiensis ${\delta}$-endotoxin. J. Bacteriol. 181: 6103-6107.
  11. Laskowski, R. A., M. W. MacArthur, D. S. Moss, and J. M. Thornton. 1993. PROCHECK: A program to check the stereo chemical quality of protein structures. J. Appl. Cryst. 26: 283-291. https://doi.org/10.1107/S0021889892009944
  12. Li, J., J. Carroll, and D. J. Ellar. 1991. Crystal structures of insecticidal ${\delta}$-endotoxin from Bacillus thuringiensis at 2.5 ${\AA}$ resolutions. Nature 353: 815-821. https://doi.org/10.1038/353815a0
  13. Lovell, S. C., I. W. Davis, W. B. Arendall III, P. I. W. de Bakker, J. M. Word, M. G. Prisant, et al. 2002. Structure validation by C alpha geometry: Phi, psi and C beta deviation. Proteins 50: 437-450
  14. Min, Z. X., X. L. Qui, D. X. Zhi, and W. F. Xiang. 2009. The theoretical three-dimensional structure of Bacillus thuringiensis Cry5Aa and its biological implications. Protein J. 28: 104-110. https://doi.org/10.1007/s10930-009-9169-0
  15. Morse, R. J., T. Yamamoto, and R. M. Stroud. 2001. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9: 409-417. https://doi.org/10.1016/S0969-2126(01)00601-3
  16. Sali, A., L. Potterton, F. Yuan, H. van Vlijmen and M. Karplus. 1995. Evaluation of comparative protein modeling by MODELLER. Proteins 23: 318-326. https://doi.org/10.1002/prot.340230306
  17. Schnepf, E., N. Crickmore, J. van Rie, D. Lereclus, J. Baum, J. Feitelson, et al. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 772-806.
  18. Schwartz, J. L., L. Potvin, X. J. Chen, R. Brousseau, R. Laprade, and D. H. Dean. 1997. Single-site mutations in the conserved alternating-arginine region affect ion channels formed by CryIAa, a Bacillus thuringiensis toxin. Appl. Environ. Microbiol. 63: 3978-3984.
  19. Xia, L. Q., X. M. Zhao, X. Z. Ding, F. X. Wang, and Y. J. Sun. 2008. The theoretical 3D structure of Bacillus thuringiensis Cry5Ba. J. Mol. Model. 14: 843-848. https://doi.org/10.1007/s00894-008-0318-8

Cited by

  1. CryGetter: a tool to automate retrieval and analysis of Cry protein data vol.17, pp.None, 2012, https://doi.org/10.1186/s12859-016-1207-2