DOI QR코드

DOI QR Code

Proteomic Comparison of Gibberella moniliformis in Limited-Nitrogen (Fumonisin-Inducing) and Excess-Nitrogen (Fumonisin-Repressing) Conditions

  • Choi, Yoon-E (LED Agri-bio Fusion Technology Research Center, Chonbuk National University) ;
  • Butchko, Robert A.E. (Bacterial Foodborne Pathogens and Mycotoxin Research Unit, USDA-ARS) ;
  • Shim, Won-Bo (Department of Plant Pathology and Microbiology, Program for the Biology of Filamentous Fungi, Texas A&M University)
  • Received : 2011.11.17
  • Accepted : 2012.01.31
  • Published : 2012.06.28

Abstract

The maize pathogen Gibberella moniliformis produces fumonisins, a group of mycotoxins associated with several disorders in animals and humans, including cancer. The current focus of our research is to understand the regulatory mechanisms involved in fumonisin biosynthesis. In this study, we employed a proteomics approach to identify novel genes involved in the fumonisin biosynthesis under nitrogen stress. The combination of genome sequence, mutant strains, EST database, microarrays, and proteomics offers an opportunity to advance our understanding of this process. We investigated the response of the G. moniliformis proteome in limited nitrogen (N0, fumonisin-inducing) and excess nitrogen (N+, fumonisin-repressing) conditions by one- and two-dimensional electrophoresis. We selected 11 differentially expressed proteins, six from limited nitrogen conditions and five from excess nitrogen conditions, and determined the sequences by peptide mass fingerprinting and MS/MS spectrophotometry. Subsequently, we identified the EST sequences corresponding to the proteins and studied their expression profiles in different culture conditions. Through the comparative analysis of gene and protein expression data, we identified three candidate genes for functional analysis and our results provided valuable clues regarding the regulatory mechanisms of fumonisin biosynthesis.

Keywords

References

  1. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  2. Brown, D. W., F. Cheung, R. H. Proctor, R. A. E. Butchko, L. Zheng, Y. Lee, et al. 2005. Comparative analysis of 87,000 expressed sequence tags from the fumonisin-producing fungus Fusarium verticillioides. Fungal Genet. Biol. 42: 848-861. https://doi.org/10.1016/j.fgb.2005.06.001
  3. Burow, G. B., T. C. Nesbitt, J. Dunlap, and N. P. Keller. 1997. Seed lipoxygenase products modulate Aspergillus mycotoxins biosynthesis. Mol. Plant Microbe Interact. 10: 689-701.
  4. Calvo, A., L. Hinze, H. W. Gardner, and N. P. Keller. 1999. Sporogenic effect of polyunsaturated fatty acids on Aspergillus spp. development. Appl. Environ. Microbiol. 65: 3668-3673.
  5. Choi, Y. E. and W. B. Shim. 2008. Functional characterization of Fusarium verticillioides CPP1, a gene encoding putative protein phosphatase 2A catalytic subunit. Microbiology 154: 326-336. https://doi.org/10.1099/mic.0.2007/011411-0
  6. Edgar, R., M. Domrachev, and A. E. Lash. 2002. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30: 207-210. https://doi.org/10.1093/nar/30.1.207
  7. Flaherty, J. E., A. M. Pirttila, B. H. Bluhm, and C. P. Woloshuk. 2003. PAC1, a pH-regulatory gene from Fusarium verticillioides. Appl. Environ. Microbiol. 69: 5222-5227. https://doi.org/10.1128/AEM.69.9.5222-5227.2003
  8. Flaherty, J. E. and C. P. Woloshuk. 2004. Regulation of fumonisin biosynthesis in Fusarium verticillioides by a zinc binuclear clustertype gene, ZFR1. Appl. Environ. Microbiol. 70: 2653-2659. https://doi.org/10.1128/AEM.70.5.2653-2659.2004
  9. Gelderblom, W. C. A., K. Jaskiewicz, W. F. O. Marasas, P. G. Thiel, R. M. Horak, R. Vleggaar, and N. P. J. Kriek. 1988. Fumonisins - novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl. Environ. Microbiol. 54: 1806-1811.
  10. Irizarry, R. A., B. Hobbs, F. Collins, Y. D. Beazer-Barclay, K. J. Antonellis, U. Scherf, and T. P. Speed. 2003. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249-264. https://doi.org/10.1093/biostatistics/4.2.249
  11. Jensen, O. N., P. Mortensen, O. Vorm, and M. Mann. 1997. Automation of matrix-assisted laser desorption/ionization mass spectrometry using fuzzy logic feedback control. Anal. Chem. 69: 1706-1714. https://doi.org/10.1021/ac961189t
  12. Keller, S. E. and T. M. Sullivan. 1996. Liquid culture methods for the production of fumonisin, pp. 205-212. In L. S. Jackson, J. W. DeVries, and L. B. Bullerman (eds.). Fumonisins in Food, Advances in Experimental Medicine and Biology, Vol. 392. Plenum, New York, NY.
  13. Marasas, W. F. O. 2001. Discovery and occurrence of the fumonisins: A historical perspective. Environ. Health Perspect. 109: 239-243.
  14. McHale, M. W., K. D. Kroening, and D. A. Bernlohr. 1996. Identification of a class of Saccharomyces cerevisiae mutants defective in fatty acid repression of gene transcription and analysis of the frm2 gene. Yeast 124: 319-331.
  15. Merrill, A. H., D. C. Liotta, and R. T. Riley. 1996. Fumonisins: Fungal toxins that shed light on sphingolipid function. Trends Cell Biol. 6: 218-223. https://doi.org/10.1016/0962-8924(96)10021-0
  16. Missmer, S. A., L. Suarez, M. Felkner, E. Wang, A. H. Merrill Jr., K. J. Rothman, and K. A. Hendricks. 2006. Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico Border. Environ. Health Perspect. 114: 237-241. https://doi.org/10.1289/ehp.8221
  17. Munkvold, G. P. and A. E. Desjardins. 1997. Fumonisins in maize - Can we reduce their occurrence? Plant Disease 81: 556-565. https://doi.org/10.1094/PDIS.1997.81.6.556
  18. Nelson, P. E., T. A. Toussoun, and W. F. O. Marasas. 1983. Fusarium Species: An Illustrated Manual for Identification. The Pennsylvania State University Press, University Park.
  19. Park, D. L. and T. C. Troxell. 2002. US perspective on mycotoxin regulatory issues. Adv. Exp. Med. Biol. 504: 277-285.
  20. Pirttila, A. M., L. M. McIntyre, G. A. Payne, and C. P. Woloshuk. 2004. Expression profile analysis of wild-type and fcc1 mutant strains of Fusarium verticillioides during fumonisin biosynthesis. Fungal Genet. Biol. 41: 647-656. https://doi.org/10.1016/j.fgb.2004.02.001
  21. Proctor, R. H., A. E. Desjardins, R. D. Plattner, and T. M. Hohn. 1999. A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet. Biol. 27: 100-112. https://doi.org/10.1006/fgbi.1999.1141
  22. Proctor, R. H., D. W. Brown, R. D. Plattner, and A. E. Desjardins. 2003. Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet. Biol. 38: 237-249. https://doi.org/10.1016/S1087-1845(02)00525-X
  23. Sagaram, U. S. and W. B. Shim. 2007. Fusarium verticillioides GBB1, a gene encoding heterotrimeric G protein ${\beta}$ subunit, is associated with fumonisin B1 biosynthesis and hyphal development but not with fungal virulence. Mol. Plant Pathol. 8: 375-384. https://doi.org/10.1111/j.1364-3703.2007.00398.x
  24. Shim, W. B. and C. P. Woloshuk. 1999. Nitrogen repression of fumonisin B1 biosynthesis in Gibberella fujikuroi. FEMS Microbiol. Lett. 177: 109-116. https://doi.org/10.1111/j.1574-6968.1999.tb13720.x
  25. Shim, W. B. and C. P. Woloshuk. 2001. Regulation of fumonisin B-1 biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene, FCC1. Appl. Environ. Microbiol. 67: 1607-1612. https://doi.org/10.1128/AEM.67.4.1607-1612.2001
  26. Tolleson, W. H., W. B. Melchior, S. M. Morris, L. J. McGarrity, O. E. Domon, L. Muskhelishvili, et al. 1996. Apoptotic and anti-proliferative effects of fumonisin B-1 in human keratinocytes, fibroblasts, esophageal epithelial cells and hepatoma cells. Carcinogenesis 17: 239-249. https://doi.org/10.1093/carcin/17.2.239
  27. Wilson, R. A., H. W. Gardner, and N. P. Keller. 2001. Cultivar-dependent expression of a maize lipoxygenase responsive to seed infesting fungi. Mol. Plant Microbe Interact. 8: 980-987.
  28. Yoshizawa, T., A. Yamashita, and Y. Luo. 1994. Fumonisin occurrence in corn from high-risk and low-risk areas for human esophageal cancer in China. Appl. Environ. Microbiol. 60: 1626-1629.

Cited by

  1. Proteomics in food: Quality, safety, microbes, and allergens vol.16, pp.5, 2012, https://doi.org/10.1002/pmic.201500369