DOI QR코드

DOI QR Code

Growth Response of Avena sativa in Amino-Acids-Rich Soils Converted from Phenol-Contaminated Soils by Corynebacterium glutamicum

  • Lee, Soo-Youn (Department of Bioprocess Engineering, Chonbuk National University) ;
  • Kim, Bit-Na (Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Choi, Yong-Woo (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Yoo, Kye-Sang (Department of Chemical Engineering, Seoul National University of Science and Technology) ;
  • Kim, Yang-Hoon (Department of Microbiology, Chungbuk National University) ;
  • Min, Ji-Ho (Department of Bioprocess Engineering, Chonbuk National University)
  • 투고 : 2011.08.31
  • 심사 : 2011.12.02
  • 발행 : 2012.04.28

초록

The biodegradation of phenol in laboratory-contaminated soil was investigated using the Gram-positive soil bacterium Corynebacterium glutamicum. This study showed that the phenol degradation caused by C. glutamicum was greatly enhanced by the addition of 1% yeast extract. From the toxicity test using Daphnia magna, the soil did not exhibit any hazardous effects after the phenol was removed using C. glutamicum. Additionally, the treatment of the phenol-contaminated soils with C. glutamicum increased various soil amino acid compositions, such as glycine, threonine, isoleucine, alanine, valine, leucine, tyrosine, and phenylalanine. This phenomenon induced an increase in the seed germination rate and the root elongation of Avena sativa (oat). This probably reflects that increased soil amino acid composition due to C. glutamicum treatment strengthens the plant roots. Therefore, the phenol-contaminated soil was effectively converted through increased soil amino acid composition, and additionally, the phenol in the soil environment was biodegraded by C. glutamicum.

키워드

참고문헌

  1. Ahamad, P. Y. A. and A. A. M. Kunhi. 2011. Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes. Biodegradation 22: 253-265. https://doi.org/10.1007/s10532-010-9392-6
  2. Bergauer, P., P.-A. Fonteyne, N. Nolard, F. Schinner, and R. Margesin. 2005. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts. Chemosphere 59: 909-918. https://doi.org/10.1016/j.chemosphere.2004.11.011
  3. Chang, L. W., J. R. Meier, and M. K. Smith. 1997. Application of plant and earthworm bioassays to evaluate remediation of a lead-contaminated soil. Arch. Environ. Contam. Toxicol. 32: 166-171. https://doi.org/10.1007/s002449900170
  4. Coniglio, M. S., V. D. Busto, P. S. Gonzalez, M. I. Medina, S. Milrad, and E. Agostini. 2008. Application of Brassica napus hairy root cultures for phenol removal. Chemosphere 72: 1035-1042. https://doi.org/10.1016/j.chemosphere.2008.04.003
  5. Eggeling, L. and H. Sahm. 2003. New ubiquitous translocators: Amino acid export by Corynebacterium glutamicum and Escherichia coli. Arch. Microbiol. 180: 155-160. https://doi.org/10.1007/s00203-003-0581-0
  6. Freeman, J. L., M. W. Persans, K. Nieman, C. Albrecht, W. Peer, I. J. Pickering, and D. E. Salt. 2004. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16: 2176-2191. https://doi.org/10.1105/tpc.104.023036
  7. Hatzinger, P. B., K. McClay, S. Vainberg, M. Tugusheva, C. W. Condee, and R. J. Steffan. 2001. Biodegradation of methyl tertbutyl ether by a pure bacterial culture. Appl. Environ. Microbiol. 67: 5601-5607. https://doi.org/10.1128/AEM.67.12.5601-5607.2001
  8. Huser, A. T., A. Becker, I. Brune, M. Dondrup, J. Kalinowski, J. Plassmeier, et al. 2003. Development of a Corynebacterium glutamicum DNA microarray and validation by genomic-wide expression profiling during growth with propionate as carbon source. J. Biotechnol. 106: 269-286. https://doi.org/10.1016/j.jbiotec.2003.08.006
  9. Kim, J. M., N. T. Le, B. S. Chung, J. H. Park, J.-W. Bae, E. L. Madsen, and C. O. Jeon. 2008. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m- and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl. Environ. Microbiol. 74: 7313-7320. https://doi.org/10.1128/AEM.01695-08
  10. Lee, S. Y., B.-N. Kim, J.-H. Han, S.-T. Chang, Y.-W. Choi, Y.-H. Kim, and J. Min. 2010. Treatment of phenol-contaminated soil by Corynebacterium glutamicum and toxicity removal evaluation. J. Hazard. Mater. 182: 937-940. https://doi.org/10.1016/j.jhazmat.2010.06.092
  11. Lee, S. Y., Y.-H. Kim, and J. Min. 2010. Conversion of phenol to glutamate and proline in Corynebacterium glutamicum is regulated by transcriptional regulator ArgR. Appl. Microbiol. Biotechnol. 85: 713-720. https://doi.org/10.1007/s00253-009-2206-2
  12. Lee, S. Y., T.-H. Le, S.-T. Chang, Y.-W. Choi, Y.-H. Kim, and J. Min. 2010. Utilization of phenol and naphthalene affects synthesis of various amino acids in Corynebacterium glutamicum. Curr. Microbiol. 61: 596-600. https://doi.org/10.1007/s00284-010-9658-6
  13. Park, J. Y., J. W. Hong, and G. M. Gadd. 2009. Phenol degradation by Fusarium oxysporum GJ4 is affected by toxic catalytic polymerization mediated by copper oxide. Chemosphere 75: 765-771. https://doi.org/10.1016/j.chemosphere.2009.01.011
  14. Peng, R.-H., A.-S. Xiong, Y. Xue, X.-Y. Fu, F. Gao, W. Zhao, et al. 2008. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 32: 927-955. https://doi.org/10.1111/j.1574-6976.2008.00127.x
  15. Qi, S.-W., M. T. Chaudhry, Y. Zhang, B. Meng, Y. Huang, K. K. Zhao, et al. 2007. Comparative proteomes of Corynebacterium glutamicum grown on aromatic compounds revealed novel proteins involved in aromatic degradation and a clear link between aromatic catabolism and gluconeogenesis via fructose-1,6-bisphosphatase. Proteomics 7: 3775-3787. https://doi.org/10.1002/pmic.200700481
  16. Sambrook, J., E. F. Fritsch, and T. Maniatis. 2001. Molecular Cloning: A Laboratory Manual, 3 Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  17. Seginer, I. 2003. A dynamic model for nitrogen-stressed lettuce. Ann. Bot. 91: 623-635. https://doi.org/10.1093/aob/mcg069
  18. Shen, X.-H., Y. Huang, and S.-J. Liu. 2005. Genomic analysis and identification of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Microbes Environ. 20: 160-167. https://doi.org/10.1264/jsme2.20.160
  19. Soares, A. A., J. T. Albergaria, V. F. Domingoues, M. M. Alvim-Ferraz, and C. Delerue-Mato. 2010. Remediation of soils combining soil vapor extraction and bioremediation: Benzene. Chemosphere 80: 823-828. https://doi.org/10.1016/j.chemosphere.2010.06.036
  20. Tam, L. T., C. Eymann, D. Albrecht, R. Cietmann, F. Schauer, M. Hecker, and H. Antelmann. 2006. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis. Environ. Microbiol. 8: 1408-1427. https://doi.org/10.1111/j.1462-2920.2006.01034.x
  21. Tremaine, J. H. and J. J. Miller. 2006. Effect of yeast extract, peptone, and certain nitrogen compounds on sporulation of Saccharomyces cerevisiae. Mycopathol. Mycol. Appl. 7: 241-1427.
  22. Watanabe, K., H. Futamata, and S. Harayama. 2002. Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies. Antonie Van Leeuwenhoek 81: 655-663. https://doi.org/10.1023/A:1020534328100
  23. Wise, A. A. and C. R. Kuske. 2000. Generation of novel bacterial regulatory proteins that detect priority pollutant phenols. Appl. Environ. Microbiol. 66: 163-169. https://doi.org/10.1128/AEM.66.1.163-169.2000
  24. Zhang, S., F. Hu, H. Li, and X. Li. 2009. Influence of earthworm mucus and amino acids on tomato seedling growth and cadmium accumulation. Environ. Pollut. 157: 2737-2742. https://doi.org/10.1016/j.envpol.2009.04.027

피인용 문헌

  1. Effect of Corynebacterium glutamicum on Livestock Material Burial Treatment vol.26, pp.8, 2012, https://doi.org/10.4014/jmb.1603.03056