참고문헌
- Ackerley, D. F., Y. Barak, S. V. Lynch, J. Curtin, and A. Matin. 2006. Effect of chromate stress on Escherichia coli K-12. J. Bacteriol. 188: 3371-3381. https://doi.org/10.1128/JB.188.9.3371-3381.2006
- Ahmed, N., F. Fasim, M. Arif, and N. Jamil. 2000. Inducible tolerance to heavy metals in airborne bacteria. Pak. J. Biol. Sci. 3: 2232-2237. https://doi.org/10.3923/pjbs.2000.2232.2237
- American Public Health Association, American Water Works Association, Water Pollution Control Federation. 1995. Standard Methods for the Examination of Water and Wastewater.
- Aravindhan, R., K. J. Sreeram, J. R. Rao, and B. U. Nair. 2007. Biological removal of carcinogenic chromium (VI) using mixed Pseudomonas strains. J. Gen. Appl. Microbiol. 53: 71-79. https://doi.org/10.2323/jgam.53.71
- Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl. Acids. Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
- Baladi, F., A. M. Vaughan, and G. J. Olson. 1990. Chromium (VI) resistant yeast isolated from a sewage treatment plant receiving tannery wastes. Appl. Environ. Microbiol. 56: 913-918.
- Camargo, F. A. O., F. M. Bento, B. C. Okeke, and W. T. Frankenberger. 2003. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J. Environ. Qual. 32: 1228-1233. https://doi.org/10.2134/jeq2003.1228
- Chourey, K., W. Wei, X. F. Wan, and D. K. Thompson. 2008. Transcriptome analysis reveals response regulator SO2426-mediated gene expression in Shewanella oneidensis MR-1under chromate challenge. BMC Genomics 9: 395. https://doi.org/10.1186/1471-2164-9-395
- Clesceri, L. A., E. Greenberg, and A. D. Eaton. 1998. Standard Methods for the Examination of Water and Wastewater, pp 1325. 20th Ed. American Public Health Association, Washington.
- Daulton, T. L., B. J. Little, J. Jones-Meehan, D. A. Blom, and L. F. Allard. 2007. Microbial reduction of chromium from the hexavalent to divalent state. Geochim. Cosmochim. Acta 71: 556-565. https://doi.org/10.1016/j.gca.2006.10.007
- Dermou, E., A. Velissariou, D. Xenos, and D. Vayenas. 2005. Biological chromium (VI) reduction using a trickling filter. J. Haz. Mat. 126: 78-85. https://doi.org/10.1016/j.jhazmat.2005.06.008
- Desai, C., K. Jain, and D. Madamwar. 2008. Evaluation of in vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr(VI) polluted industrial landfill. Bioresour. Technol. 99: 6059-6069. https://doi.org/10.1016/j.biortech.2007.12.046
- Faisal, M. and S. Hasnain. 2004. Comparative study of Cr(VI) uptake and reduction in industrial effluent by Ochrobactrum intermedium and Brevibacterium sp. Biotechnol. Lett. 26: 1623-1628. https://doi.org/10.1007/s10529-004-3184-1
- Faisal, M., A. Hameed, and S. Hasnain. 2005. Chromium resistant bacteria and cyanobacteria: Impact on Cr(VI) reduction potential and plant growth. J. Ind. Microbiol. Biotechnol. 32: 615-621. https://doi.org/10.1007/s10295-005-0241-2
- Fiol, N., C. Escudero, and I. Villaescusa. 2008. Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark. Bioresour. Technol. 99: 5030-5036. https://doi.org/10.1016/j.biortech.2007.09.007
- Francisco, R., A. Moreno, and P. V. Morais. 2010. Different physiological responses to chromate and dichromate in the chromium resistant and reducing strain Ochrobactrum tritici 5bvl1. Biometals. 23: 713-725. https://doi.org/10.1007/s10534-010-9338-9
- Ganguli, A. and A. K. Tripathi. 2001. Inducible periplasmic chromate reducing activity in Pseudomonas aeruginosa isolated from a leather tannery effluent. J. Microbiol. Biotechnol. 11: 355-361.
- Humphries, A. C., K. P. Nott, L. D. Hall, and L. E., Macaskie. 2005. Reduction of Cr(VI) by immobilized cells of Desulfovibrio vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776. Biotechnol. Bioeng. 9: 589-596.
- Iftikhar, S., M. Faisal, and S. Hasnain. 2007. Cytosolic reduction of toxic Cr(VI) by indigenous microorganisms. Res. J. Environ. Sci. 1: 77-81. https://doi.org/10.3923/rjes.2007.77.81
- Khalil, M., F. Adeeb, S. Hassan, and J. Iqbal. 1991. Annual progress report of EPA research laboratory. Environmental Protection Agency, Hons. Phy. Environment Planning Department, Government of Pakistan.
- Kotas, J. and Z. Stasicka. 2000. Chromium occurrence in the environment and method of its speciation. Environ. Poll. 107: 263-283. https://doi.org/10.1016/S0269-7491(99)00168-2
- Leive, L. 1965. A non-specific increase in permeability in E. coli produced by EDTA. Proc. Nat. Acad. Sci. USA 53: 745-750. https://doi.org/10.1073/pnas.53.4.745
- Li, B., D. Pan. J. Zheng. Y. Cheng. X. Ma, F. Huang, and Z. Lin. 2008. Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi. Langmuir 24: 9630-9635. https://doi.org/10.1021/la801851h
- Lin, Z., Y. Zhu, T. L. Kalabegishvili, N. Y. Tsibakhashvili, and H. Y. Holman. 2006. Effect of chromate action on morphology of basalt-inhabiting bacteria. Mater. Sci. Eng. C 26: 610-612. https://doi.org/10.1016/j.msec.2005.06.058
- Liu, Y. G., W. H. Xu, G. M. Zeng, C. F. Tang, and C. F. Li. 2004. Experimental study on reduction by Pseudomonas aeruginosa. J. Environ. Sci. 16: 795-801.
- Losi, M. E., C. Amrhein, and W. T. Frankenberger. 1994. Environmental biochemistry of chromium. Rev. Environ. Contam. Toxicol. 36: 91-121.
- Lounatmaa, K. 1985. Electron microscopic methods for the study of bacterial surface structures, pp. 243-261. In T. K. Korhonen, E. A. Dawes, and P. H. Makela (eds.). Enterobacterial Surface Antigens: Methods for Molecular Characterization. Elsevier, Amsterdam, The Netherlands.
- Martins, A., L. Machado, S. Costa, P. Cerca, G. Spengler, M. Viveiros, and L. Amaral. 2011. Role of calcium in the efflux system of Escherichia coli. Int. J. Antimicrob. Agents 37: 410-414. https://doi.org/10.1016/j.ijantimicag.2011.01.010
- McGinnis, S. and T. L. Madden. 2004. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32: W20-W25. https://doi.org/10.1093/nar/gkh435
- Michel, C., M. Brugma, C. Aubert, A. Bernadac, and M. Bruschi. 2001. Enzymatic reduction of chromate: Comparative studies using sulfate-reducing bacteria. Appl. Microbiol. Biotechnol. 55: 95-100. https://doi.org/10.1007/s002530000467
- Ohtake, H. and S. Silver. 1994. Bacterial detoxification of toxic chromate, pp. 403-415. In G. R. Choudhuri (ed.). Biological Degradation and Bioremediation of Toxic Chemicals. Discorides Press, Portland.
- Opperman, D. J. and E. van. Heerden. 2007. Aerobic Cr(VI) reduction by Thermus scotoductus strain SA-01. J. Appl. Microbiol. 1907-1913.
- Park, C. H., M. Keyhan, B. Wielinga, S. Fendorf, and A. Matin. 2001. Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl. Environ. Microbiol. 66: 1788-1795.
- Peitzsch, N., G. Eberz, and H. D. Nies. 1998. Alcaligenes eutrophus as a bacterial chromate sensor. Appl. Environ. Microbiol. 64: 453-458.
- Philip, L., L. Iyengar, and C. Venkobachar. 1998. Cr(VI) reduction by Bacillus coagulans isolated from contaminated soils. J. Environ. Eng. 124: 1165-1170. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:12(1165)
- Poopal, A. C. and R. S. Laxman. 2008. Hexavalent chromate reduction by immobilized Streptomyces griseus. Biotechnol. Lett. 30: 1005-1010. https://doi.org/10.1007/s10529-008-9662-0
- Qadir, A., R. N. Malik, and S. Z. Hussain. 2008. Spatio-temporal variations in water quality of Nullah Aik-tributary of the river Chenab, Pakistan. Environ. Monitor. Assess. 140: 43-59. https://doi.org/10.1007/s10661-007-9846-4
- Sarangi, A. and C. Krishnan. 2008. Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Bioresour. Technol. 99: 4130-4137. https://doi.org/10.1016/j.biortech.2007.08.059
- Sultan, S. and S. Hasnain. 2007. Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresour. Technol. 98: 340-344. https://doi.org/10.1016/j.biortech.2005.12.025
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
- Thacker, U. and D. Madamwar. 2005. Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World J. Microbiol. Biotechnol. 21: 891-899. https://doi.org/10.1007/s11274-004-6557-7
- Thacker, U., R. Parikh, Y. Shouche, and D. Madamwar. 2007. Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites. Bioresour. Technol. 98: 1541-1547. https://doi.org/10.1016/j.biortech.2006.06.011
- Ullah, R., R. N. Malik, and A. Qadir. 2009. Assessment of groundwater contamination in an industrial city, Sialkot, Pakistan. Afr. J. Environ. Sci. Technol. 3: 429-446.
- Viti, C., A. Pace, and L. Giovannetti. 2003. Characterization of Cr(VI) resistant bacteria isolated from chromium contaminated soil by tannery activity. Curr. Microbiol. 46: 1-5. https://doi.org/10.1007/s00284-002-3800-z
- Wang, Y. T. and H. Shen. 1995. Bacterial reduction of hexavalent chromium. J. Ind. Microbiol. 14: 159-163. https://doi.org/10.1007/BF01569898
- Yang, J., M. He, and G. Wang. 2009. Removal of toxic chromate using free and immobilized Cr(VI) reducing bacterial cells of Intrasporangium sp. Q5-1. World J. Microbiol. Biotechnol. 25: 1579-1587. https://doi.org/10.1007/s11274-009-0047-x
- Zhu, W., L. Chai, Z. Ma, Y. Wang, H. Xiao, and K. Zhao. 2008. Anaerobic reduction of hexavalent chromium by bacterial cells of Achromobacter sp. strain Ch1. Res. Microbiol. 163: 616-623. https://doi.org/10.1016/j.micres.2006.09.008
피인용 문헌
- Optimization of Chromate Reduction by Whole Cells of <i>Arthrobacter</i> sp. SUK 1205 Isolated from Metalliferous Chromite Mine Environment vol.2, pp.4, 2012, https://doi.org/10.4236/gm.2012.24012
- Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (10510): characterization of PCP dechlorination products, bacterial structure, and functional groups vol.20, pp.4, 2013, https://doi.org/10.1007/s11356-012-1101-z
- Biotreatment of chromite ore processing residue by Pannonibacter phragmitetus BB vol.20, pp.8, 2013, https://doi.org/10.1007/s11356-013-1526-z
- Dechlorination of chloroorganics, decolorization, and simultaneous bioremediation of Cr6+ from real tannery effluent employing indigenous Bacillus cereus isolate vol.21, pp.7, 2012, https://doi.org/10.1007/s11356-013-2479-y
- Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances vol.59, pp.4, 2012, https://doi.org/10.1007/s12223-014-0304-8
- Comparative Study of Cr(VI) Removal byExiguobacteriumsp. in Free and Immobilized Forms vol.18, pp.4, 2012, https://doi.org/10.1080/10889868.2014.938722
- Reduction of Hexavalent Chromium by Viable Cells of Chromium Resistant Bacteria Isolated from Chromite Mining Environment vol.2014, pp.None, 2012, https://doi.org/10.1155/2014/941341
- Study on cellular changes and potential endotrophy of wheat roots due to colonization of Chromium reducing bacteria vol.12, pp.10, 2015, https://doi.org/10.1007/s13762-015-0757-6
- Bioreduction of Hexavalent Chromium from Soil Column Leachate byPseudomonas stutzeri vol.19, pp.4, 2012, https://doi.org/10.1080/10889868.2015.1029116
- Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants vol.100, pp.7, 2012, https://doi.org/10.1007/s00253-016-7364-4
- Bioremediation of chromium solutions and chromium containing wastewaters vol.42, pp.4, 2012, https://doi.org/10.3109/1040841x.2014.974501
- Isolation and Identification of Chromium (VI)-Resistant Bacteria From Soltan Abad River Sediments (Shiraz-Iran) vol.8, pp.1, 2012, https://doi.org/10.17795/jjhs-33576
- Isolation of indigenous Staphylococcus sciuri from chromium-contaminated paddy field and its application for reduction of Cr(VI) in rice plants cultivated in pots vol.21, pp.1, 2017, https://doi.org/10.1080/10889868.2017.1282935
- Reduction of Hexavalent Chromium and Detection of Chromate Reductase (ChrR) in Stenotrophomonas maltophilia vol.23, pp.2, 2012, https://doi.org/10.3390/molecules23020406
- Effective bioremediation and toxicity assessment of tannery wastewaters treated with indigenous bacteria vol.8, pp.10, 2012, https://doi.org/10.1007/s13205-018-1444-3
- Chromate detoxification potential of Staphylococcus sp. isolates from an estuary vol.28, pp.4, 2012, https://doi.org/10.1007/s10646-019-02038-w
- Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils vol.259, pp.None, 2012, https://doi.org/10.1016/j.jenvman.2019.110051
- Successive use of microorganisms to remove chromium from wastewater vol.104, pp.9, 2012, https://doi.org/10.1007/s00253-020-10533-y
- Operational Characteristics of Immobilized Ochrobactrum sp. CUST210-1 Biosystem and Immobilized Chromate Reductase Biosystem in Continuously Treating Actual Chromium-Containing Wastewater vol.10, pp.17, 2012, https://doi.org/10.3390/app10175934
- Highly Cr(VI)-tolerant Staphylococcus simulans assisting chromate evacuation from tannery effluent vol.10, pp.1, 2012, https://doi.org/10.1515/gps-2021-0027
- Removal of Hexavalent Chromium by Aspergillus niger Through Reduction and Accumulation vol.38, pp.1, 2012, https://doi.org/10.1080/01490451.2020.1807659
- Hexavalent chromium bioremediation with insight into molecular aspect: an overview vol.25, pp.3, 2012, https://doi.org/10.1080/10889868.2021.1884529
- A Bacillus and Lysinibacillus sp. bio-augmented Festuca arundinacea phytoremediation system for the rapid decontamination of chromium influenced soil vol.283, pp.None, 2021, https://doi.org/10.1016/j.chemosphere.2021.131186