참고문헌
- Bai, Y., J. Wang, Z. Zhang, P. Yang, P. Shi, H. Luo, et al. 2010. A new xylanase from thermoacidophilic Alicyclobacillus sp. A4 with broad-range pH activity and pH stability. J. Ind. Microbiol. Biotechnol. 37: 187-194. https://doi.org/10.1007/s10295-009-0662-4
- Benkert, P., M. Biasini, and T. Schwede. 2011. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27: 343-350. https://doi.org/10.1093/bioinformatics/btq662
- Bradford, M. M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
-
Chen, C., Q. J. Xie, L. H. Wang, C. Qin, F. Y. Xie, S. Z. Yao, and J. H. Chen. 2011. Experimental platform to study heavy metal ion-enzyme interactions and amperometric inhibitive assay of
$Ag^+$ based on solution state and immobilized glucose oxidase. Anal. Chem. 83: 2660-2666. https://doi.org/10.1021/ac1031435 - Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
- Connerton, I., N. Cummings, G. W. Harris, P. Debeire, and C. Breton. 1999. A single domain thermophilic xylanase can bind insoluble xylan: Evidence for surface aromatic clusters. Biochim. Biophys. Acta Protein Struct. 1433: 110-121. https://doi.org/10.1016/S0167-4838(99)00151-X
- Ferre, F. and P. Clote. 2006. DiANNA 1.1: An extension of the DiANNA Web server for ternary cysteine classification. Nucleic Acids Res. 34: W182-W185. https://doi.org/10.1093/nar/gkl189
- Finn, R. D., J. Tate, J. Mistry, P. C. Coggill, S. J. Sammut, H. R. Hotz, et al. 2008. The Pfam protein families database. Nucleic Acids Res. 36: D281-D288. https://doi.org/10.1093/nar/gkn226
- Fontes, C., H. J. Gilbert, G. P. Hazlewood, J. H. Clarke, J. A. M. Prates, V. A. McKie, et al. 2000. A novel Cellvibrio mixtus family 10 xylanase that is both intracellular and expressed under non-inducing conditions. Microbiology 146: 1959-1967. https://doi.org/10.1099/00221287-146-8-1959
- Gallardo, O., P. Diaz, and F. I. J. Pastor. 2003. Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: A new subclass of family 10 xylanases. Appl. Microbiol. Biotechnol. 61: 226-233. https://doi.org/10.1007/s00253-003-1239-1
- Gallardo, O., F. I. J. Pastor, J. Polaina, P. Diaz, R. Lysek, P. Vogel, et al. 2010. Structural insights into the specificity of Xyn10B from Paenibacillus barcinonensis and its improved stability by forced protein evolution. J. Biol. Chem. 285: 2721-2733. https://doi.org/10.1074/jbc.M109.064394
-
Guo, B., X. L. Chen, C. Y. Sun, B. C. Zhou, and Y. Z. Zhang. 2009. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-
${\beta}$ -1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl. Microbiol. Biotechnol. 84: 1107-1115. https://doi.org/10.1007/s00253-009-2056-y - Hou, Y. H., T. H. Wang, H. Long, and H. Y. Zhu. 2006. Novel cold-adaptive Penicillium strain FS010 secreting thermo-labile xylanase isolated from Yellow Sea. Acta Biochim. Biophys. Sin. 38: 142-149. https://doi.org/10.1111/j.1745-7270.2006.00135.x
- Humphrey, W., A. Dalke, and K. Schulten. 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 14: 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
- Hung, K. S., S. M. Liu, T. Y. Fang, W. S. Tzou, F. P. Lin, K. H. Sun, and S. J. Tang. 2011. Characterization of a salt-tolerant xylanase from Thermoanaerobacterium saccharolyticum NTOU1. Biotechnol. Lett. 1441-1447.
- Hwang, I. T., H. K. Lim, H. Y. Song, S. J. Cho, J. S. Chang, and N. J. Park. 2010. Cloning and characterization of a xylanase, KRICT PX1 from the strain Paenibacillus sp. HPL-001. Biotechnol. Adv. 28: 594-601. https://doi.org/10.1016/j.biotechadv.2010.05.007
- Kim, D. Y., M. K. Han, H. W. Oh, K. S. Bae, T. S. Jeong, S. U. Kim, et al. 2010. Novel intracellular GH10 xylanase from Cohnella laeviribosi HY-21: Biocatalytic properties and alterations of substrate specificities by site-directed mutagenesis of Trp residues. Bioresour. Technol. 101: 8814-8821. https://doi.org/10.1016/j.biortech.2010.06.023
- Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York.
- Lee, C. C., M. Smith, R. Kibblewhite-Accinelli, T. G. Williams, K. Wagschal, G. H. Robertson, and D. W. S. Wong. 2006. Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr. Microbiol. 52: 112-116. https://doi.org/10.1007/s00284-005-4583-9
- Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036
- Pell, G., E. J. Taylor, T. M. Gloster, J. P. Turkenburg, C. Fontes, L. M. A. Ferreira, et al. 2004. The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J. Biol. Chem. 279: 9597-9605. https://doi.org/10.1074/jbc.M312278200
- Petrescu, I., J. Lamotte-Brasseur, J. P. Chessa, P. Ntarima, M. Claeyssens, B. Devreese, et al. 2000. Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4: 137-144. https://doi.org/10.1007/s007920070028
- Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin. 2004. UCSF chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25: 1605-1612. https://doi.org/10.1002/jcc.20084
- Siddiqui, K. S. and R. Cavicchioli. 2006. Cold-adapted enzymes. Annu. Rev. Biochem. 75: 403-433. https://doi.org/10.1146/annurev.biochem.75.103004.142723
- Solomon, V., A. Teplitsky, S. Shulami, G. Zolotnitsky, Y. Shoham, and G. Shoham. 2007. Structure-specificity relationships of an intracellular xylanase from Geobacillus stearothermophilus. Acta Crystallogr. D Biol. Crystallogr. 63: 845-859. https://doi.org/10.1107/S0907444907024845
- Sudo, M., M. Sakka, T. Kimura, K. Ratanakhanokchai, and K. Sakka. 2010. Characterization of Paenibacillus curdlanolyticus intracellular xylanase Xyn10B encoded by the xyn10B gene. Biosci. Biotechnol. Biochem. 74: 2358-2360. https://doi.org/10.1271/bbb.100555
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
- Usui, K., T. Suzuki, T. Akisaka, and K. Kawai. 2003. A cytoplasmic xylanase (XynX) of Aeromonas caviae ME-1 is released from the cytoplasm to the periplasm by osmotic downshock. J. Biosci. Bioeng. 95: 488-495. https://doi.org/10.1016/S1389-1723(03)80050-6
- Wang, G., H. Luo, Y. Wang, H. Huang, P. Shi, P. Yang, et al. 2011. A novel cold-active xylanase gene from the environmental DNA of goat rumen contents: Direct cloning, expression and enzyme characterization. Bioresour. Technol. 102: 3330-3336. https://doi.org/10.1016/j.biortech.2010.11.004
- Wang, G., Y. Wang, P. Yang, H. Luo, H. Huang, P. Shi, et al. 2010. Molecular detection and diversity of xylanase genes in alpine tundra soil. Appl. Microbiol. Biotechnol. 87: 1383-1393. https://doi.org/10.1007/s00253-010-2564-9
- Willard, L., A. Ranjan, H. Y. Zhang, H. Monzavi, R. F. Boyko, B. D. Sykes, and D. S. Wishart. 2003. VADAR: A Web server for quantitative evaluation of protein structure quality. Nucleic Acids Res. 31: 3316-3319. https://doi.org/10.1093/nar/gkg565
- Wu, J., T. Guan, H. Jiang, X. Zhi, S. Tang, H. Dong, et al. 2009. Diversity of actinobacterial community in saline sediments from Yunnan and Xinjiang, China. Extremophiles 13: 623-632. https://doi.org/10.1007/s00792-009-0245-3
- Wu, S., B. Liu, and X. Zhang. 2006. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl. Microbiol. Biotechnol. 72: 1210-1216. https://doi.org/10.1007/s00253-006-0416-4
- Zhou, J. P., H. Q. Huang, K. Meng, P. J. Shi, Y. R. Wang, H. Y. Luo, et al. 2010. Cloning of a new xylanase gene from Streptomyces sp. TN119 using a modified thermal asymmetric interlaced-PCR specific for GC-rich genes and biochemical characterization. Appl. Biochem. Biotechnol. 160: 1277-1292. https://doi.org/10.1007/s12010-009-8642-8
- Zhou, J. P., H. Q. Huang, K. Meng, P. J. Shi, Y. R. Wang, H. Y. Luo, et al. 2009. Molecular and biochemical characterization of a novel xylanase from the symbiotic Sphingobacterium sp. TN19. Appl. Microbiol. Biotechnol. 85: 323-333. https://doi.org/10.1007/s00253-009-2081-x
- Zhou, J. P., P. J. Shi, R. Zhang, H. Q. Huang, K. Meng, P. L. Yang, and B. Yao. 2011. Symbiotic Streptomyces sp. TN119 GH 11 xylanase: A new pH-stable, protease- and SDS-resistant xylanase. J. Ind. Microbiol. Biotechnol. 38: 523-530. https://doi.org/10.1007/s10295-010-0795-5
피인용 문헌
- Cold-Active Xylanase Produced by Fungi Associated with Antarctic Marine Sponges vol.172, pp.1, 2012, https://doi.org/10.1007/s12010-013-0551-1
- Molecular and biochemical characterization of a novel cold-active and metal ion-tolerant GH10 xylanase from frozen soil vol.31, pp.5, 2017, https://doi.org/10.1080/13102818.2017.1359667
- Molecular and biochemical characterization of a novel cold-active and metal ion-tolerant GH10 xylanase from frozen soil vol.31, pp.5, 2017, https://doi.org/10.1080/13102818.2017.1359667
- Characterization of a novel cold-active xylanase from Luteimonas species vol.34, pp.8, 2012, https://doi.org/10.1007/s11274-018-2505-9
- Molecular and Biochemical Characterization of a Bimodular Xylanase From Marinifilaceae Bacterium Strain SPP2 vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.01507
- A novel thermostable GH10 xylanase with activities on a wide variety of cellulosic substrates from a xylanolytic Bacillus strain exhibiting significant synergy with commercial Celluclast 1.5 L in pr vol.12, pp.None, 2012, https://doi.org/10.1186/s13068-019-1389-8