DOI QR코드

DOI QR Code

Enhancement of Anti-Inflammatory Activity of PEP-1-FK506 Binding Protein by Silk Fibroin Peptide

  • Kim, Dae-Won (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Hwang, Hyun-Sook (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Kim, Duk-Soo (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Sheen, Seung-Hoon (Department of Neurosurgery, Hallym University Medical Center) ;
  • Heo, Dong-Hwa (Department of Neurosurgery, Hallym University Medical Center) ;
  • Hwang, Gyo-Jun (Department of Neurosurgery, Hallym University Medical Center) ;
  • Kang, Suk-Hyung (Department of Neurosurgery, Hallym University Medical Center) ;
  • Kweon, Hae-Yong (Sericultural and Agicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Jo, You-Young (Sericultural and Agicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kang, Seok-Woo (Sericultural and Agicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Kwang-Gill (Sericultural and Agicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Park, Jin-Seu (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Eum, Won-Sik (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Cho, Yong-Jun (Department of Neurosurgery, Hallym University Medical Center) ;
  • Choi, Soo-Young (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University)
  • 투고 : 2011.11.10
  • 심사 : 2011.12.08
  • 발행 : 2012.04.28

초록

Silk fibroin (SF) peptide has been traditionally used as a treatment for flatulence, spasms, and phlegm. In this study, we examined whether SF peptide enhanced the anti-inflammatory effect of PEP-1-FK506 binding protein (PEP-1-FK506BP) through comparing the anti-inflammatory activities of SF peptide and/or PEP-1-FK506BP. In the presence or absence of SF peptide, transduction levels of PEP-1-FK506BP into HaCaT cells and mice skin and anti-inflammatory activities of PEP-1-FK506BP were identified by Western blot and histological analyses. SF peptide alone effectively reduced both mice ear edema and the elevated levels of cyclooxygenase-2, interleukin-6 and $-1{\beta}$, and tumor necrosis factor-${\alpha}$, showing similar anti-inflammatory effect to that of PEP-1-FK506BP. Furthermore, co-treatment with SF peptide and PEP-1-FK506BP exhibited more enhanced anti-inflammatory effects than the samples treated with SF peptides or PEP-1-FK506BP alone, suggesting the possibility that SF peptide and PEP-1-FK506BP might interact with each other. Moreover, the transduction data demonstrated that SF peptide did not affect the transduction of PEP-1-FK506BP into HaCaT cells and mice skin, indicating that the improvement of anti-inflammatory effect of PEP-1-FK506BP was not caused by enhanced transduction of PEP-1-FK506BP. Thus, these results suggest the possibility that co-treatment with SF peptide and PEP-1-FK506BP may be exploited as a useful therapy for various inflammation-related diseases.

키워드

참고문헌

  1. Bickers, D. R. and M. Athar. 2006. Oxidative stress in the pathogenesis of skin disease. J. Invest. Dermatol. 126: 2565-2575. https://doi.org/10.1038/sj.jid.5700340
  2. Breiman, A. and I. Camus. 2002. The involvement of mammalian and plant FK506-binding proteins (FKBPs) in development. Transgenic Res. 11: 321-335. https://doi.org/10.1023/A:1016331814412
  3. Dietz, G. P. 2010. Cell-penetrating peptide technology to deliver chaperones and associated factors in diseases and basic research. Curr. Pharm. Biotechol. 11: 167-174. https://doi.org/10.2174/138920110790909731
  4. Dunlop, E. A. and A. R. Tee. 2009. Mammalian target of rapamycin complex 1: Signalling inputs, substrates and feedback mechanisms. Cell Signal. 21: 827-835. https://doi.org/10.1016/j.cellsig.2009.01.012
  5. Floyd, R. A. 1990. Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 4: 2587-2597. https://doi.org/10.1096/fasebj.4.9.2189775
  6. Garcia, J. A. and D. Danielpour. 2008. Mammalian target of rapamycin inhibition as a therapeutic strategy in the management of urologic malignancies. Mol. Cancer Ther. 7: 1347-1354. https://doi.org/10.1158/1535-7163.MCT-07-2408
  7. Grilli, M. and M. Memo. 1999. Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic neuronal pathway. Cell Death Differ. 6: 22-27. https://doi.org/10.1038/sj.cdd.4400463
  8. Grilli, M. and M. Memo. 1999. Nuclear factor-kappaB/Rel proteins: A point of convergence of signalling pathways relevant in neuronal function and dysfunction. Biochem. Pharmacol. 57: 1-7. https://doi.org/10.1016/S0006-2952(98)00214-7
  9. Hyun, C. K., I. Y. Kim, and S. C. Frost. 2004. Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 adipocytes. J. Nutr. 134: 3257-3263. https://doi.org/10.1093/jn/134.12.3257
  10. Igarashi, K., K. Yoshioka, K. Mizutani, M. Miyakoshi, T. Murakami, and T. Akizawa. 2006. Blood pressure-depressing activity of a peptide derived from silkworm fibroin in spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 70: 517-520. https://doi.org/10.1271/bbb.70.517
  11. Kang, C. B., H. Ye, S. Dhe-Paganon, and H. S. Yoon. 2008. FKBP family proteins: Immunophilins with versatile biological functions. Neurosignals 16: 318-325. https://doi.org/10.1159/000123041
  12. Kim, J. Y., J. Y. Choi, J. H. Jeong, E. S. Jang, A. S. Kim, S. G. Kim, et al. 2010. Low molecular weight silk fibroin increases alkaline phosphatase and type I collagen expression in MG63 cells. BMB Rep. 43: 52-56. https://doi.org/10.5483/BMBRep.2010.43.1.052
  13. Kim, S. Y., H. J. Jeong, D. W. Kim, M. J. Kim, J. J. An, E. J. Sohn, et al. 2011. Transduced PEP-1-FK506BP inhibits the inflammatory response in the Raw 264.7 cell and mouse models. Immunobiology 216: 771-781. https://doi.org/10.1016/j.imbio.2010.12.008
  14. Kim, S. Y., E. J. Sohn, D. W. Kim, H. J. Jeong, M. J. Kim, H. W. Kang, et al. 2011. Transduced PEP-1-FK506BP ameliorates atopic dermatitis in NC/Nga mice. J. Invest. Dermatol. 131: 1477-1485. https://doi.org/10.1038/jid.2011.49
  15. Lee, S. H., H. J. Jeong, D. W. Kim, E. J. Sohn, M. J. Kim, D. S. Kim, et al. 2010. Enhancement of HIV-1 Tat fusion protein transduction efficiency by bog blueberry anthocyanins. BMB Rep. 43: 561-566. https://doi.org/10.5483/BMBRep.2010.43.8.561
  16. Long, C., L. G. Cook, S. L. Hamilton, G. Y. Wu, and B. M. Mitchell. 2007. FK506 binding protein 12/12.6 depletion increases endothelial nitric oxide synthase threonine 495 phosphorylation and blood pressure. Hypertension 49: 569-576. https://doi.org/10.1161/01.HYP.0000257914.80918.72
  17. Lopez-Ilasaca, M., C. Schiene, G. Kullertz, T. Tradler, G. Fischer, and R. Wetzker. 1998. Effects of FK506-binding protein 12 and FK506 on autophosphorylation of epidermal growth factor receptor. J. Biol. Chem. 273: 9430-9434. https://doi.org/10.1074/jbc.273.16.9430
  18. Lu, S., X. Wang, Q. Lv, X. Hu, N. Uppal, F. Omenetto, and D. L. Kaplan. 2009. Stabilization of enzymes in silk film. Biomacromolecules 10: 1032-1042. https://doi.org/10.1021/bm800956n
  19. Mates, J. M. 2000. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 83: 83-104.
  20. Nathan, C. 2002. Points of control in inflammation. Nature 420: 846-852. https://doi.org/10.1038/nature01320
  21. Schiene-Fischer, C. and C. Yu. 2001. Receptor accessory folding helper enzymes: The functional role of peptidyl prolyl cis/trans isomerase. FEBS Lett. 495: 1-6. https://doi.org/10.1016/S0014-5793(01)02326-2
  22. Schwarze, S. R., K. A. Hruska, and S. F. Dowdy. 2000. Protein transduction: Unrestricted delivery into all cells? Trends Cell Biol. 10: 290-295. https://doi.org/10.1016/S0962-8924(00)01771-2
  23. Sohn, E. J., D. W. Kim, Y. N. Kim, S. M. Kim, S. S. Lim, T. C. Kang, et al. 2011. Effects of pergolide mesylate on transduction efficiency of PEP-1-catalase protein. Biochem. Biophys. Res. Commun. 406: 336-340. https://doi.org/10.1016/j.bbrc.2011.02.038
  24. Song, H. Y., J. A. Lee, S. M. Ju, K. Y. Yoo, M. H. Won, H. J. Kwon, et al. 2008. Topical transduction of superoxide dismutase mediated by HIV-1 Tat protein transduction domain ameliorates 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in mice. Biochem. Pharmacol. 75: 1348-1357. https://doi.org/10.1016/j.bcp.2007.11.015
  25. Stanley, P. L., S. Steiner, and M. Havens. 1991. Tramposch KM: Mouse skin inflammation induced by multiple topical applications of 12-O-tetradecanoylphorbol-13-acetate. Skin Pharmacol. 4: 262-271. https://doi.org/10.1159/000210960
  26. Wadia, J. S. and S. F. Dowdy. 2002. Protein transduction technology. Curr. Opin. Biotechnol. 13: 52-56. https://doi.org/10.1016/S0958-1669(02)00284-7
  27. Wadia, J. S. and S. F. Dowdy. 2003. Modulation of cellular function by TAT mediated transduction of full length proteins. Curr. Protein Pept. Sci. 4: 97-104. https://doi.org/10.2174/1389203033487289
  28. Wang, T., P. K. Donahoe, and A. S. Zervos. 1994. Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science 265: 674-676. https://doi.org/10.1126/science.7518616
  29. Yamaguchi, T., A. Kurisaki, N. Yamakawa, K. Minakuchi, and H. Sugino. 2006. FKBP12 functions as an adaptor of the Smad7-Smurf1 complex on activin type I receptor. J. Mol. Endocrinol. 36: 569-579. https://doi.org/10.1677/jme.1.01966
  30. Zhou, H., A. Lin, Z. Gu, S. Chen, N. H. Park, and R. Chiu. 2000. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced c-Jun N-terminal kinase (JNK) phosphatase renders immortalized or transformed epithelial cells refractory to TPA-inducible JNK activity. J. Biol. Chem. 275: 22868-22875. https://doi.org/10.1074/jbc.M909273199

피인용 문헌

  1. Silk Peptide Intake Increases Fat Oxidation at Rest in Exercised Mice vol.59, pp.3, 2012, https://doi.org/10.3177/jnsv.59.250
  2. Silk fibroin nanoparticles constitute a vector for controlled release of resveratrol in an experimental model of inflammatory bowel disease in rats vol.9, pp.None, 2012, https://doi.org/10.2147/ijn.s68526
  3. Nutrition Supplements to Stimulate Lipolysis: A Review in Relation to Endurance Exercise Capacity vol.62, pp.3, 2016, https://doi.org/10.3177/jnsv.62.141
  4. Effects of silk peptides administration on fat utilization over a whole day in mice vol.20, pp.4, 2012, https://doi.org/10.20463/jenb.2016.0055
  5. Treatment with solubilized Silk-Derived Protein (SDP) enhances rabbit corneal epithelial wound healing vol.12, pp.11, 2012, https://doi.org/10.1371/journal.pone.0188154
  6. The Biomedical Use of Silk: Past, Present, Future vol.8, pp.1, 2019, https://doi.org/10.1002/adhm.201800465
  7. Silk fibroin-based nanotherapeutics: application in the treatment of colonic diseases vol.14, pp.17, 2012, https://doi.org/10.2217/nnm-2019-0058