참고문헌
- Bickers, D. R. and M. Athar. 2006. Oxidative stress in the pathogenesis of skin disease. J. Invest. Dermatol. 126: 2565-2575. https://doi.org/10.1038/sj.jid.5700340
- Breiman, A. and I. Camus. 2002. The involvement of mammalian and plant FK506-binding proteins (FKBPs) in development. Transgenic Res. 11: 321-335. https://doi.org/10.1023/A:1016331814412
- Dietz, G. P. 2010. Cell-penetrating peptide technology to deliver chaperones and associated factors in diseases and basic research. Curr. Pharm. Biotechol. 11: 167-174. https://doi.org/10.2174/138920110790909731
- Dunlop, E. A. and A. R. Tee. 2009. Mammalian target of rapamycin complex 1: Signalling inputs, substrates and feedback mechanisms. Cell Signal. 21: 827-835. https://doi.org/10.1016/j.cellsig.2009.01.012
- Floyd, R. A. 1990. Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 4: 2587-2597. https://doi.org/10.1096/fasebj.4.9.2189775
- Garcia, J. A. and D. Danielpour. 2008. Mammalian target of rapamycin inhibition as a therapeutic strategy in the management of urologic malignancies. Mol. Cancer Ther. 7: 1347-1354. https://doi.org/10.1158/1535-7163.MCT-07-2408
- Grilli, M. and M. Memo. 1999. Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic neuronal pathway. Cell Death Differ. 6: 22-27. https://doi.org/10.1038/sj.cdd.4400463
- Grilli, M. and M. Memo. 1999. Nuclear factor-kappaB/Rel proteins: A point of convergence of signalling pathways relevant in neuronal function and dysfunction. Biochem. Pharmacol. 57: 1-7. https://doi.org/10.1016/S0006-2952(98)00214-7
- Hyun, C. K., I. Y. Kim, and S. C. Frost. 2004. Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 adipocytes. J. Nutr. 134: 3257-3263. https://doi.org/10.1093/jn/134.12.3257
- Igarashi, K., K. Yoshioka, K. Mizutani, M. Miyakoshi, T. Murakami, and T. Akizawa. 2006. Blood pressure-depressing activity of a peptide derived from silkworm fibroin in spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 70: 517-520. https://doi.org/10.1271/bbb.70.517
- Kang, C. B., H. Ye, S. Dhe-Paganon, and H. S. Yoon. 2008. FKBP family proteins: Immunophilins with versatile biological functions. Neurosignals 16: 318-325. https://doi.org/10.1159/000123041
- Kim, J. Y., J. Y. Choi, J. H. Jeong, E. S. Jang, A. S. Kim, S. G. Kim, et al. 2010. Low molecular weight silk fibroin increases alkaline phosphatase and type I collagen expression in MG63 cells. BMB Rep. 43: 52-56. https://doi.org/10.5483/BMBRep.2010.43.1.052
- Kim, S. Y., H. J. Jeong, D. W. Kim, M. J. Kim, J. J. An, E. J. Sohn, et al. 2011. Transduced PEP-1-FK506BP inhibits the inflammatory response in the Raw 264.7 cell and mouse models. Immunobiology 216: 771-781. https://doi.org/10.1016/j.imbio.2010.12.008
- Kim, S. Y., E. J. Sohn, D. W. Kim, H. J. Jeong, M. J. Kim, H. W. Kang, et al. 2011. Transduced PEP-1-FK506BP ameliorates atopic dermatitis in NC/Nga mice. J. Invest. Dermatol. 131: 1477-1485. https://doi.org/10.1038/jid.2011.49
- Lee, S. H., H. J. Jeong, D. W. Kim, E. J. Sohn, M. J. Kim, D. S. Kim, et al. 2010. Enhancement of HIV-1 Tat fusion protein transduction efficiency by bog blueberry anthocyanins. BMB Rep. 43: 561-566. https://doi.org/10.5483/BMBRep.2010.43.8.561
- Long, C., L. G. Cook, S. L. Hamilton, G. Y. Wu, and B. M. Mitchell. 2007. FK506 binding protein 12/12.6 depletion increases endothelial nitric oxide synthase threonine 495 phosphorylation and blood pressure. Hypertension 49: 569-576. https://doi.org/10.1161/01.HYP.0000257914.80918.72
- Lopez-Ilasaca, M., C. Schiene, G. Kullertz, T. Tradler, G. Fischer, and R. Wetzker. 1998. Effects of FK506-binding protein 12 and FK506 on autophosphorylation of epidermal growth factor receptor. J. Biol. Chem. 273: 9430-9434. https://doi.org/10.1074/jbc.273.16.9430
- Lu, S., X. Wang, Q. Lv, X. Hu, N. Uppal, F. Omenetto, and D. L. Kaplan. 2009. Stabilization of enzymes in silk film. Biomacromolecules 10: 1032-1042. https://doi.org/10.1021/bm800956n
- Mates, J. M. 2000. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 83: 83-104.
- Nathan, C. 2002. Points of control in inflammation. Nature 420: 846-852. https://doi.org/10.1038/nature01320
- Schiene-Fischer, C. and C. Yu. 2001. Receptor accessory folding helper enzymes: The functional role of peptidyl prolyl cis/trans isomerase. FEBS Lett. 495: 1-6. https://doi.org/10.1016/S0014-5793(01)02326-2
- Schwarze, S. R., K. A. Hruska, and S. F. Dowdy. 2000. Protein transduction: Unrestricted delivery into all cells? Trends Cell Biol. 10: 290-295. https://doi.org/10.1016/S0962-8924(00)01771-2
- Sohn, E. J., D. W. Kim, Y. N. Kim, S. M. Kim, S. S. Lim, T. C. Kang, et al. 2011. Effects of pergolide mesylate on transduction efficiency of PEP-1-catalase protein. Biochem. Biophys. Res. Commun. 406: 336-340. https://doi.org/10.1016/j.bbrc.2011.02.038
- Song, H. Y., J. A. Lee, S. M. Ju, K. Y. Yoo, M. H. Won, H. J. Kwon, et al. 2008. Topical transduction of superoxide dismutase mediated by HIV-1 Tat protein transduction domain ameliorates 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in mice. Biochem. Pharmacol. 75: 1348-1357. https://doi.org/10.1016/j.bcp.2007.11.015
- Stanley, P. L., S. Steiner, and M. Havens. 1991. Tramposch KM: Mouse skin inflammation induced by multiple topical applications of 12-O-tetradecanoylphorbol-13-acetate. Skin Pharmacol. 4: 262-271. https://doi.org/10.1159/000210960
- Wadia, J. S. and S. F. Dowdy. 2002. Protein transduction technology. Curr. Opin. Biotechnol. 13: 52-56. https://doi.org/10.1016/S0958-1669(02)00284-7
- Wadia, J. S. and S. F. Dowdy. 2003. Modulation of cellular function by TAT mediated transduction of full length proteins. Curr. Protein Pept. Sci. 4: 97-104. https://doi.org/10.2174/1389203033487289
- Wang, T., P. K. Donahoe, and A. S. Zervos. 1994. Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science 265: 674-676. https://doi.org/10.1126/science.7518616
- Yamaguchi, T., A. Kurisaki, N. Yamakawa, K. Minakuchi, and H. Sugino. 2006. FKBP12 functions as an adaptor of the Smad7-Smurf1 complex on activin type I receptor. J. Mol. Endocrinol. 36: 569-579. https://doi.org/10.1677/jme.1.01966
- Zhou, H., A. Lin, Z. Gu, S. Chen, N. H. Park, and R. Chiu. 2000. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced c-Jun N-terminal kinase (JNK) phosphatase renders immortalized or transformed epithelial cells refractory to TPA-inducible JNK activity. J. Biol. Chem. 275: 22868-22875. https://doi.org/10.1074/jbc.M909273199
피인용 문헌
- Silk Peptide Intake Increases Fat Oxidation at Rest in Exercised Mice vol.59, pp.3, 2012, https://doi.org/10.3177/jnsv.59.250
- Silk fibroin nanoparticles constitute a vector for controlled release of resveratrol in an experimental model of inflammatory bowel disease in rats vol.9, pp.None, 2012, https://doi.org/10.2147/ijn.s68526
- Nutrition Supplements to Stimulate Lipolysis: A Review in Relation to Endurance Exercise Capacity vol.62, pp.3, 2016, https://doi.org/10.3177/jnsv.62.141
- Effects of silk peptides administration on fat utilization over a whole day in mice vol.20, pp.4, 2012, https://doi.org/10.20463/jenb.2016.0055
- Treatment with solubilized Silk-Derived Protein (SDP) enhances rabbit corneal epithelial wound healing vol.12, pp.11, 2012, https://doi.org/10.1371/journal.pone.0188154
- The Biomedical Use of Silk: Past, Present, Future vol.8, pp.1, 2019, https://doi.org/10.1002/adhm.201800465
- Silk fibroin-based nanotherapeutics: application in the treatment of colonic diseases vol.14, pp.17, 2012, https://doi.org/10.2217/nnm-2019-0058