References
- Blumel, S., M. Contzen, M. Lutz, A. Stolz, and H.-J. Knackmuss. 1998. Isolation of a bacterial strain with the ability to utilize the sulfonated azo compound 4-carboxy-4'-sulfoazobenzene as the sole source of carbon and energy. Appl. Environ. Microbiol. 64: 2315-2317.
- Bodrossy, L., N. Stralis-Pavese, J. C. Murrell, S. Radajewski, A. Weilharter, and A. Sessitsch. 2003. Development and validation of a diagnostic microbial microarray for methanotrophs. Environ. Microbiol. 5: 566-582. https://doi.org/10.1046/j.1462-2920.2003.00450.x
- Chao, A., R. L. Chazdon, R. K. Colwell, and T.-J. Shen. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8: 148-159.
- Chao, A., R. L. Chazdon, R. K. Colwell, and T.-J. Shen. 2006. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62: 361-371. https://doi.org/10.1111/j.1541-0420.2005.00489.x
- Chun, J., J.-H. Lee, Y. Jung, M. Kim, S. Kim, B. K. Kim, and Y.-W. Lim. 2007. EzTaxon: A Web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
- Clapp, L. W., J. M. Regan, F. Ali, J. D. Newman, J. K. Park, and D. R. Noguera. 1999. Activity, structure, and stratification of membrane attached methanotrophic biofilms cometabolically degrading trichloroethylene. Water Sci. Technol. 39: 153-161.
- Cole, J. R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris, et al. 2009. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: D141-D145. https://doi.org/10.1093/nar/gkn879
- Costello, A. M., A. J. Auman, J. L. Macalady, K. M. Scow, and M. E. Lidstrom. 2002. Estimation of methanotroph abundance in a freshwater lake sediment. Environ. Microbiol. 4: 443-450. https://doi.org/10.1046/j.1462-2920.2002.00318.x
- Droege, M. and B. Hill. 2008. The Genome Sequencer FLXTM System - Longer reads, more applications, straight forward bioinformatics and more complete data sets. J. Biotechnol. 136: 3-10. https://doi.org/10.1016/j.jbiotec.2008.03.021
- Gaidos, E., A. Rusch, and M. Ilardo. 2011. Ribosomal tag pyrosequencing of DNA and RNA from benthic coral reef microbiota: Community spatial structure, rare members and nitrogen-cycling guilds. Environ. Microbiol. 13: 1138-1152. https://doi.org/10.1111/j.1462-2920.2010.02392.x
- Gebert, J., A. Grongroft, M. Schloter, and A. Gattinger. 2004. Community structure in a methanotroph biofilter as revealed by phospholipid fatty acid analysis. FEMS Microbiol. Lett. 240: 61-68. https://doi.org/10.1016/j.femsle.2004.09.013
- Gebert, J., N. Stralis-Pavese, M. Alawi, and L. Bodrossy. 2008. Analysis of methanotrophic communities in landfill biofilters using diagnostic microarray. Environ. Microbiol. 10: 1175-1188. https://doi.org/10.1111/j.1462-2920.2007.01534.x
- Hery, M., A. C. Singer, D. Kumaresan, L. Bodrossy, N. Stralis-Pavese, J. I. Prosser, et al. 2008. Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. ISME J. 2: 92-104. https://doi.org/10.1038/ismej.2007.66
- Hall-Stoodley, L., J. W. Costerton, and P. Stoodley. 2004. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2: 95-108. https://doi.org/10.1038/nrmicro821
- Hanson, R. and T. Hanson. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471.
-
Henckel, T., P. Roslev, and R. Conrad. 2000. Effects of
$O_2$ and$CH_4$ on presence and activity of the indigenous methanotrophic community in rice field soil. Environ. Microbiol. 2: 666-679. https://doi.org/10.1046/j.1462-2920.2000.00149.x - Huson, D. H., A. F. Auch, J. Qi, and S. C. Schuster. 2007. MEGAN analysis of metagenomic data. Genome Res. 17: 377-386. https://doi.org/10.1101/gr.5969107
- Iguchi, H., H. Yurimoto, and Y. Sakai. 2011. Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. Int. J. Syst. Evol. Microbiol. 61: 810-815. https://doi.org/10.1099/ijs.0.019604-0
- Kolb, S., C. Knief, S. Stubner, and R. Conrad. 2003. Quantitative detection of methanotrophs in soil by novel pmoA-targeted realtime PCR assays. Appl. Environ. Microbiol. 69: 2423-2429. https://doi.org/10.1128/AEM.69.5.2423-2429.2003
- Lambo, A. J. and T. R. Patel. 2007. Biodegradation of polychlorinated biphenyls in Aroclor 1232 and production of metabolites from 2,4,4'-trichlorobiphenyl at low temperature by psychrotolerant Hydrogenophaga sp. strain IA3-A. J. Appl. Microbiol. 102: 1318-1329. https://doi.org/10.1111/j.1365-2672.2006.03268.x
- Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
- Lee, E.-H., H. Park, and K.-S. Cho. 2010. Characterization of methane, benzene and toluene-oxidizing consortia enriched from landfill and riparian wetland soils. J. Hazard. Mater. 184: 313-320. https://doi.org/10.1016/j.jhazmat.2010.08.038
- Lee, M.-L. T., F. C. Kuo, G. A. Whitmore, and J. Sklar. 2000. Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations. Proc. Natl. Acad. Sci. USA 97: 9834-9839. https://doi.org/10.1073/pnas.97.18.9834
- Loy, A., W. Beisker, and H. Meier. 2005. Diversity of bacteria growing in natural mineral water after bottling. Appl. Environ. Microbiol. 71: 3624-3632. https://doi.org/10.1128/AEM.71.7.3624-3632.2005
- Lozupone, C., M. Hamady, and R. Knight. 2006. UniFrac - an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7: 371. https://doi.org/10.1186/1471-2105-7-371
- Martineau, C., L. G. Whyte, and C. W. Greer. 2010. Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian high arctic. Appl. Environ. Microbiol. 76: 5773-5784. https://doi.org/10.1128/AEM.03094-09
- McDonald, I. R., M. Upton, G. Hall, R. W. Pickup, C. Edwards, J. R. Saunders, et al. 1999. Molecular ecological analysis of methanogens and methanotrophs in blanket bog peat. Microb. Ecol. 38: 225-233. https://doi.org/10.1007/s002489900172
- Modin, O., K. Fukushi, F. Nakajima, and K. Yamamoto. 2010. Nitrate removal and biofilm characteristics in methanotrophic membrane biofilm reactors with various gas supply regimes. Water Res. 44: 85-96. https://doi.org/10.1016/j.watres.2009.09.009
- Pan, Y., L. Bodrossy, P. Frenzel, A.-G. Hestnes, S. Krause, C. Luke, et al. 2010. Assessing the impact of inter- as well as intra laboratory variation on reproducibility of microbial community analyses. Appl. Environ. Microbiol. 76: 7451-7458. https://doi.org/10.1128/AEM.01595-10
- Pettersson, E., J. Lundeberg, and A. Ahmadian. 2009. Generations of sequencing technologies. Genomics 93: 105-111. https://doi.org/10.1016/j.ygeno.2008.10.003
- Prosser, J. I. 2010. Replicate or lie. Environ. Microbiol. 12: 1806-1810. https://doi.org/10.1111/j.1462-2920.2010.02201.x
- Rainey, F. A., N. L. Ward-Rainey, P. H. Janssen, H. Hippe, and E. Stackebrandt. 1996. Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology 142: 2087-2095. https://doi.org/10.1099/13500872-142-8-2087
- Ramos-Padron, E., S. Bordenave, S. Lin, I. M. Bhaskar, X. Dong, C. W. Sensen, et al. 2011. Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ. Sci. Technol. 45: 439-446. https://doi.org/10.1021/es1028487
- Rittmann, B. E. 2006. Microbial ecology to manage processes in environmental biotechnology. Trends Biotechnol. 24: 261-266. https://doi.org/10.1016/j.tibtech.2006.04.003
- Semrau, J. D., A. A. DiSpirito, and S. Yoon. 2010. Methanotrophs and copper. FEMS Microbiol. Rev. 34: 1-36. https://doi.org/10.1111/j.1574-6976.2009.00197.x
- Stralis-Pavese, N., A. Sessitsch, A. Weilharter, T. Reichenauer, J. Riesing, J. Csontos, et al. 2004. Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environ. Microbiol. 6: 347-363. https://doi.org/10.1111/j.1462-2920.2004.00582.x
- Thierry, S., H. Macarie, T. Iizuka, W. Geissdorfer, E. A. Assih, M. Spanevello, et al. 2004. Pseudoxanthomonas mexicana sp. nov. and Pseudoxanthomonas japonensis sp. nov., isolated from diverse environments, and emended descriptions of the genus Pseudoxanthomonas Finkmann et al. 2000 and of its type species. Int. J. Syst. Evol. Microbiol. 54: 2245-2255. https://doi.org/10.1099/ijs.0.02810-0
- Tolker-Nielsen, T. and S. Molin. 2000. Spatial organization of microbial biofilm communities. Microb. Ecol. 40: 75-84.
- Unno, T., J. Jang, D. Han, J. H. Kim, M. J. Sadowsky, O.-S. Kim, et al. 2010. Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds. Environ. Sci. Technol. 44: 7777-7782. https://doi.org/10.1021/es101500z
- Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267. https://doi.org/10.1128/AEM.00062-07
- Will, C., A. Thurmer, A. Wollherr, H. Nacke, N. Herold, M. Schrumpf, et al. 2010. Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes. Appl. Environ. Microbiol. 76: 6751-6759. https://doi.org/10.1128/AEM.01063-10
- Willems, A., J. Busse, M. Goor, B. Pot, E. Falsen, E. Jantzen, et al. 1989. Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and "Pseudomonas carboxydoflava"), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int. J. Syst. Bacteriol. 39: 319-333. https://doi.org/10.1099/00207713-39-3-319
- Yoon, J.-H., S.-J. Kang, S. H. Ryu, C. O. Jeon, and T.-K. Oh. 2008. Hydrogenophaga bisanensis sp. nov., isolated from wastewater of a textile dye works. Int. J. Syst. Evol. Microbiol. 58: 393-397. https://doi.org/10.1099/ijs.0.65271-0
- Yoon, S., J. Carey, and J. Semrau. 2009. Feasibility of atmospheric methane removal using methanotrophic biotrickling filters. Appl. Microbiol. Biotechnol. 83: 949-956. https://doi.org/10.1007/s00253-009-1977-9
- Zhang, H., M. Ziv-El, B. E. Rittmann, and R. Krajmalnik-Brown. 2010. Effect of dechlorination and sulfate reduction on the microbial community structure in denitrifying membranebiofilm reactors. Environ. Sci. Technol. 44: 5159-5164. https://doi.org/10.1021/es100695n
Cited by
- Comparison of RNA- and DNA-based bacterial communities in a lab-scale methane-degrading biocover vol.97, pp.7, 2012, https://doi.org/10.1007/s00253-012-4123-z
- Effects of nonmethane volatile organic compounds on microbial community of methanotrophic biofilter vol.97, pp.14, 2012, https://doi.org/10.1007/s00253-012-4443-z
- Functional rigidity of a methane biofilter during the temporal microbial succession vol.98, pp.7, 2012, https://doi.org/10.1007/s00253-013-5371-2
- Investigating bacterial populations in styrene-degrading biofilters by 16S rDNA tag pyrosequencing vol.99, pp.1, 2012, https://doi.org/10.1007/s00253-014-5868-3
- Performances of microbial fuel cells fed with rejected wastewater from BioCH4and BioH2processes treating molasses wastewater vol.51, pp.4, 2016, https://doi.org/10.1080/10934529.2015.1109394
- Culture scale-up and immobilisation of a mixed methanotrophic consortium for methane remediation in pilot-scale bio-filters vol.38, pp.4, 2012, https://doi.org/10.1080/09593330.2016.1198424
- Characterization of Bacterial Community Dynamics during the Decomposition of Pig Carcasses in Simulated Soil Burial and Composting Systems vol.27, pp.12, 2012, https://doi.org/10.4014/jmb.1709.09032
- 매립지 메탄 저감을 위한 바이오커버의 현장 적용 평가 vol.45, pp.4, 2017, https://doi.org/10.4014/mbl.1708.08004
- Relationship of nutrient dynamics and bacterial community structure at the water-sediment interface using a benthic chamber experiment vol.53, pp.5, 2012, https://doi.org/10.1080/10934529.2017.1412191
- Design and shelf stability assessment of bacterial agents for simultaneous removal of methane and odors vol.54, pp.9, 2012, https://doi.org/10.1080/10934529.2019.1607651
- Effects of Plant and Soil Amendment on Remediation Performance and Methane Mitigation in Petroleum-Contaminated Soil vol.31, pp.1, 2012, https://doi.org/10.4014/jmb.2006.06023