DOI QR코드

DOI QR Code

A Novel cry2Ab Gene from the Indigenous Isolate Bacillus thuringiensis subsp. kurstaki

  • Sevim, Ali (Department of Biology, Faculty of Science, Karadeniz Technical University) ;
  • Eryuzlu, Emine (Department of Biology, Faculty of Science, Karadeniz Technical University) ;
  • Demirbag, Zihni (Department of Biology, Faculty of Science, Karadeniz Technical University) ;
  • Demir, Ismail (Department of Biology, Faculty of Science, Karadeniz Technical University)
  • Received : 2011.08.24
  • Accepted : 2011.09.23
  • Published : 2012.01.28

Abstract

A novel cry2Ab gene was cloned and sequenced from the indigenous isolate of Bacillus thuringiensis subsp. kurstaki. This gene was designated as cry2Ab25 and its sequence revealed an open reading frame of 1,902 bp encoding a 633 aa protein with calculated molecular mass of 70 kDa and pI value of 8.98. The amino acid sequence of the Cry2Ab25 protein was compared with previously known Cry2Ab toxins, and the phylogenetic relationships among them were determined. The deduced amino acid sequence of the Cry2Ab25 protein showed 99% homology to the known Cry2Ab proteins, except for Cry2Ab10 and Cry2Ab12 with 97% homology, and a variation in one amino acid residue in comparison with all known Cry2Ab proteins. The cry2Ab25 gene was expressed in Escherichia coli BL21(DE3) cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the Cry2Ab25 protein is about 70 kDa. The toxin expressed in BL21(DE3) exhibited high toxicity against Malacosoma neustria and Rhagoletis cerasi with 73% and 75% mortality after 5 days of treatment, respectively.

Keywords

References

  1. Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265-267.
  2. Ahmad, W., C. Nicholls, and D. J. Ellar. 1989. Cloning and expression of an entomocidal protein gene from Bacillus thuringiensis galleriae toxic to both lepidoptera and diptera. FEMS Microbiol. Lett. 59: 197-202. https://doi.org/10.1111/j.1574-6968.1989.tb03109.x
  3. Ali, M. I. and R. G. Luttrell. 2007. Susceptibility of bollworm and tobacco budworm (Lepidoptera: Noctuidae) to Cry2Ab2 insecticidal protein. J. Econ. Entomol. 100: 921-931. https://doi.org/10.1093/jee/100.3.921
  4. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  5. Beard, C. E., L. Court, R. G. Mourant, B. James, J. Van Rie, L. Masson, and R. J. Akhurst. 2008. Use of a cry1Ac-resistant line of Helicoverpa armigera (Lepidoptera: Noctuidae) to detect novel insecticidal toxin genes in Bacillus thuringiensis. Curr. Microbiol. 57: 175-180. https://doi.org/10.1007/s00284-008-9098-8
  6. Becker, N. 2000. Bacterial control of vector-mosquitoes and black flies, pp. 383-398. In J. F. Charles, A. Delecluse, and C. Nielsen-le Roux (eds.). Entomopathogenic Bacteria: From Laboratory to Field Application. Kluwer Academic Publishers, Dordrecht.
  7. Betz, F. S., B. G. Hammond, and R. L. Fuchs. 2000. Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regul. Toxicol. Pharmacol. 32: 156-173. https://doi.org/10.1006/rtph.2000.1426
  8. Bietlot, H. P. L., I. Vishnubhatla, P. R. Carey, M. Pazsgay, and H. Kaplan. 1990. Characterization of the cysteine residues and disulphide linkages in the protein crystal of B. thuringiensis. J. Biochem. 267: 309-315. https://doi.org/10.1042/bj2670309
  9. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  10. Bravo, A., M. Soberon, and S. S. Gill. 2005. Bacillus thuringiensis mechanisms and use, pp. 175-206. In L. I. Gilbert, K. Iatrou, and S. S. Gill (eds.). Comprehensive Molecular Insect Science, Vol. 6. Elsevier, New York.
  11. Chattopadhyay, A., N. B. Bhatnagar, and R. Bhatnagar. 2004. Bacterial insecticidal toxins. Crit. Rev. Microbiol. 30: 33-54. https://doi.org/10.1080/10408410490270712
  12. Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, et al. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 807-813.
  13. Dankocsik, C., W. P. Donovan, and C. S. Jany. 1990. Activation of a cryptic crystal protein gene of Bacillus thuringiensis subspecies kurstaki by gene fusion and determination of the crystal protein insecticidal specificity. Mol. Microbiol. 4: 2087-2094. https://doi.org/10.1111/j.1365-2958.1990.tb00569.x
  14. Donovan, P. V., C. C. Dankocsik, M. P. Gilbert, M. C. Gawron- Burke, R. G. Groat, and B. C. Carlton. 1988. Amino acid sequence and entomocidal activity of the P2 crystal protein. J. Biol. Chem. 263: 561-567.
  15. Federici, B. A. 2007. Bacteria as biological control agents for insects: Economics, engineering, and environmental safety, pp. 25-51. In M. Vurro and J. Gressel (eds.). Novel Biotechnologies for Biocontrol Agent Enhancement and Management. Springer, Amsterdam.
  16. Fischhoff, D. A., K. S. Bowdish, F. J. Perlak, P. G. Marrone, S. M. McCormick, J. G. Nidermeyer, et al. 1987. Insect tolerant transgenic tomato plants. Bio/Technology 5: 807-813.
  17. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. 41: 95-98.
  18. Hofte, H. and H. R. Whiteley. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242-255.
  19. Jahn, N., W. Schnetter, and K. Geider. 1987. Cloning of an insecticidal toxin gene of Bacillus thuringiensis subsp. tenebrionis and its expression in Escherichia coli cells. FEMS Microbiol. Lett. 48: 311-315. https://doi.org/10.1111/j.1574-6968.1987.tb02615.x
  20. Kati, H., K. Sezen, A. O. Belduz, and Z. Demirbag. 2005. Characterization of a Bacillus thuringiensis subsp kurstaki strain isolated from Malacosoma neustria L. (Lepidoptera : Lasiocampidae). Biol. Bratislava 60: 301-305.
  21. Kumar, S., M. Nei, J. Dudley, and K. Tamura. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 4: 299-306.
  22. Lereclus, D., O. Arantes, J. Chaufaux, and M. M. Lecadet. 1989. Transformation and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 60: 211-218.
  23. Li, M. S., J. Y. Choi, J. Y. Roh, H. J. Shim, J. N. Kang, Y. S. Kim, et al. 2007. Identification and molecular characterization of novel cry1-type toxin genes from Bacillus thuringiensis K1 isolated in Korea. J. Microbiol. Biotechnol. 17: 15-20.
  24. Liang, H., Y. Liu, J. Zhu, P. Guan, S. Li, S. Wang, et al. 2011. Characterization of cry2-type genes of Bacillus thuringiensis strains from soil-isolated of Sichuan basin, China. Braz. J. Microbiol. 42: 140-146. https://doi.org/10.1590/S1517-83822011000100018
  25. Lima, G. M. S., R. W. S. Aguiar, R. F. T. Correa, E. S. Martins, A. C. M. Gomes, T. Nagata, et al. 2008. Cry2A toxins from Bacillus thuringiensis expressed in insect cells are toxic to two lepidopteran insects. World J. Microbiol. Biotechnol. 24: 2941-2948. https://doi.org/10.1007/s11274-008-9836-x
  26. McGaughey, W. H. 1985. Evaluation of Bacillus thuringiensis for controlling Indianmeal moths (Lep. Pyralidae) in farm grain bins and silos. J. Econ. Entomol. 78: 1089-1094. https://doi.org/10.1093/jee/78.5.1089
  27. Murphy, R. C. and S. E. Stevens. 1992. Cloning and expression of the cryIVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium Agmenellum quadruplicatum PR-6 and its resulting larvicidal activity. Appl. Environ. Microbiol. 58: 1650-1655.
  28. Peferoen, M. 1997. Insect control with transgenic plants expressing Bacillus thuringiensis crystal proteins, pp. 21-48. In N. Carozzi and M. Koziel (eds.). Advances in Insect Control, the Role of Transgenic Plants. Taylor and Francis, Bristol.
  29. Perlak, F. J., R. W. Deaton, T. A. Armstrong, R. L. Fuchs, S. R. Sims, J. T. Greenplate, and D. A. Fischhoff. 1990. Insect resistant cotton plants. Bio/Technology 8: 939-943.
  30. Raddadi, N., A. Cherif, H. Ouzari, M. Marzorati, L. Brusetti, A. Boudabous, and D. Daffonchio. 2007. Bacillus thuringiensis beyond insect biocontrol: Plant growth promotion and biosafety of polyvalent strains. Ann. Microbiol. 57: 481-494. https://doi.org/10.1007/BF03175344
  31. Roh, J. Y., J. Y. Choi, M. S. Li, B. R. Jin, and Y. H. Je. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17: 547-559.
  32. Romeis, J., M. Meissle, and F. Bigler. 2006. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat. Biotechnol. 24: 63-71. https://doi.org/10.1038/nbt1180
  33. Saleem, F. and A. R. Shakoori. 2010. Characterization of cry2A-type gene(s) from Pakistani isolates of Bacillus thuringiensis toxic to Lepidopteran and Dipteran insects. Pakistan J. Zool. 42: 181-193.
  34. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, pp. 191-195. Second Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  35. Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, et al. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806.
  36. Schnepf, H. E. and H. R. Whiteley. 1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 2893-2897. https://doi.org/10.1073/pnas.78.5.2893
  37. Skot, L. S., P. Harrison, A. Nath, R. Mytton, and B. C. Clifford. 1990. Expression of insecticidal activity in Rhizobium containing the $\delta$-endotoxin gene cloned from Bacillus tenebrionis subsp. tenebrionis. Plant Soil 127: 285-295. https://doi.org/10.1007/BF00014436
  38. Stock, C. A., T. J. McLoughlin, J. A. Klein, and M. J. Adang. 1990. Expression of a Bacillus thuringiensis crystal proteins gene in Pseudomonas cepacia 526. Can. J. Microbiol. 36: 879-884. https://doi.org/10.1139/m90-152
  39. Tabashnik, B. E., T. J. Dennehy, M. A. Sims, K. Larkin, G. P. Head, W. J. Moar, and Y. Carriere. 2002. Control of resistant pink bollworm (Pectinophora gossypiella) by transgenic cotton that produces Bacillus thuringiensis toxin Cry2Ab. Appl. Environ. Microbiol. 68: 3790-3794. https://doi.org/10.1128/AEM.68.8.3790-3794.2002
  40. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  41. Theoduloz, C., A. Vega, M. Salazar, E. Gonzalez, and L. Meza- Basso. 2003. Expression of a Bacillus thuringiensis $\delta$-endotoxin cry1Ab gene in Bacillus subtilis and Bacillus licheniformis strains that naturally colonize the phylloplane of tomato plants (Lycopersicon esculentum, Mills). J. Appl. Microbiol. 94: 375-381. https://doi.org/10.1046/j.1365-2672.2003.01840.x
  42. Tounsi, S. and S. Jaoua. 2003. Characterization of a novel cry2Aa-type gene from Bacillus thuringiensis subsp. kurstaki. Biotechnol. Lett. 25: 1219-1223. https://doi.org/10.1023/A:1025016221891
  43. Vaeck, M., A. Reybnaerts, J. Höfte, S. Jansens, M. DeBeuckeleer, C. Dean, et al. 1987. Transgenic plants protected from insect attack. Nature 328: 33-37. https://doi.org/10.1038/328033a0
  44. Vidal-Quist, J. C., P. Castanera, and J. Gonzalez-Cabrera. 2009. Diversity of Bacillus thuringiensis strains isolated from citrus orchards in Spain and evaluation of their insecticidal activity against Ceratitis capitata. J. Microbiol. Biotechnol. 19: 749-
  45. Winder, W. R. and H. R. Whiteley. 1989. Two highly related crystal proteins of Bacillus thuringiensis serovar. kurstaki possess different host range specificities. J. Bacteriol. 171: 965-974. https://doi.org/10.1128/jb.171.2.965-974.1989
  46. Wu, D., X. L. Cao, Y. Y. Bai, and A. I. Aronson. 1991. Sequencing of an operon containing a novel $\delta$-endotoxin gene from Bacillus thuringiensis. FEMS Microbiol. Lett. 81: 31-36.
  47. Yamamoto, T. and R. E. Mclaughlin. 1981. Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. kurstaki toxic to the mosquito larva, Aedes taeniorhynchus. Biochem. Biophys. Res. Commun. 103: 414-421. https://doi.org/10.1016/0006-291X(81)90468-X
  48. Zheng, A., J. Zhu, F. Tan, P. Guan, X. Yu, S. Wang, et al. 2010. Characterization and expression of a novel haplotype cry2Atype gene from Bacillus thuringiensis strain JF19-2. Ann. Microbiol. 60: 129-134. https://doi.org/10.1007/s13213-009-0011-x

Cited by

  1. Culturable bacterial microbiota of Plagiodera versicolora (L.) (Coleoptera: Chrysomelidae) and virulence of the isolated strains vol.58, pp.3, 2013, https://doi.org/10.1007/s12223-012-0199-1
  2. Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles vol.84, pp.3, 2012, https://doi.org/10.1111/1574-6941.12110
  3. Molecular Characterization of Chitinase Genes from a Local Isolate of Serratia marcescens and Their Contribution to the Insecticidal Activity of Bacillus thuringiensis Strains vol.67, pp.4, 2013, https://doi.org/10.1007/s00284-013-0395-5
  4. Bacterial isolates from Palomena prasina (Hemiptera: Pentatomidae) include potential microbial control agents vol.24, pp.9, 2012, https://doi.org/10.1080/09583157.2014.918584
  5. Characterization of a new cry2Ab gene of Bacillus thuringiensis with high insecticidal activity against Plutella xylostella L. vol.30, pp.10, 2012, https://doi.org/10.1007/s11274-014-1689-x
  6. Prevalence of cry2-type genes in Bacillus thuringiensis isolates recovered from diverse habitats in India and isolation of a novel cry2Af2 gene toxic to Helicoverpa armigera (cotton boll worm) vol.62, pp.12, 2012, https://doi.org/10.1139/cjm-2016-0042
  7. Culturable symbionts associated with the reproductive and digestive tissues of the Neotropical brown stinkbug Euschistus heros vol.111, pp.12, 2012, https://doi.org/10.1007/s10482-018-1130-9
  8. Potential for Bacillus thuringiensis and Other Bacterial Toxins as Biological Control Agents to Combat Dipteran Pests of Medical and Agronomic Importance vol.12, pp.12, 2012, https://doi.org/10.3390/toxins12120773