Browse > Article
http://dx.doi.org/10.4014/jmb.1108.08061

A Novel cry2Ab Gene from the Indigenous Isolate Bacillus thuringiensis subsp. kurstaki  

Sevim, Ali (Department of Biology, Faculty of Science, Karadeniz Technical University)
Eryuzlu, Emine (Department of Biology, Faculty of Science, Karadeniz Technical University)
Demirbag, Zihni (Department of Biology, Faculty of Science, Karadeniz Technical University)
Demir, Ismail (Department of Biology, Faculty of Science, Karadeniz Technical University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.1, 2012 , pp. 133-140 More about this Journal
Abstract
A novel cry2Ab gene was cloned and sequenced from the indigenous isolate of Bacillus thuringiensis subsp. kurstaki. This gene was designated as cry2Ab25 and its sequence revealed an open reading frame of 1,902 bp encoding a 633 aa protein with calculated molecular mass of 70 kDa and pI value of 8.98. The amino acid sequence of the Cry2Ab25 protein was compared with previously known Cry2Ab toxins, and the phylogenetic relationships among them were determined. The deduced amino acid sequence of the Cry2Ab25 protein showed 99% homology to the known Cry2Ab proteins, except for Cry2Ab10 and Cry2Ab12 with 97% homology, and a variation in one amino acid residue in comparison with all known Cry2Ab proteins. The cry2Ab25 gene was expressed in Escherichia coli BL21(DE3) cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the Cry2Ab25 protein is about 70 kDa. The toxin expressed in BL21(DE3) exhibited high toxicity against Malacosoma neustria and Rhagoletis cerasi with 73% and 75% mortality after 5 days of treatment, respectively.
Keywords
cry2Ab; cloning; virulence; Malacosoma neustria; Rhagoletis cerasi;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265-267.
2 Ahmad, W., C. Nicholls, and D. J. Ellar. 1989. Cloning and expression of an entomocidal protein gene from Bacillus thuringiensis galleriae toxic to both lepidoptera and diptera. FEMS Microbiol. Lett. 59: 197-202.   DOI
3 Ali, M. I. and R. G. Luttrell. 2007. Susceptibility of bollworm and tobacco budworm (Lepidoptera: Noctuidae) to Cry2Ab2 insecticidal protein. J. Econ. Entomol. 100: 921-931.   DOI
4 Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.   DOI
5 Beard, C. E., L. Court, R. G. Mourant, B. James, J. Van Rie, L. Masson, and R. J. Akhurst. 2008. Use of a cry1Ac-resistant line of Helicoverpa armigera (Lepidoptera: Noctuidae) to detect novel insecticidal toxin genes in Bacillus thuringiensis. Curr. Microbiol. 57: 175-180.   DOI
6 Becker, N. 2000. Bacterial control of vector-mosquitoes and black flies, pp. 383-398. In J. F. Charles, A. Delecluse, and C. Nielsen-le Roux (eds.). Entomopathogenic Bacteria: From Laboratory to Field Application. Kluwer Academic Publishers, Dordrecht.
7 Betz, F. S., B. G. Hammond, and R. L. Fuchs. 2000. Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regul. Toxicol. Pharmacol. 32: 156-173.   DOI
8 Bietlot, H. P. L., I. Vishnubhatla, P. R. Carey, M. Pazsgay, and H. Kaplan. 1990. Characterization of the cysteine residues and disulphide linkages in the protein crystal of B. thuringiensis. J. Biochem. 267: 309-315.   DOI
9 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254.   DOI
10 Bravo, A., M. Soberon, and S. S. Gill. 2005. Bacillus thuringiensis mechanisms and use, pp. 175-206. In L. I. Gilbert, K. Iatrou, and S. S. Gill (eds.). Comprehensive Molecular Insect Science, Vol. 6. Elsevier, New York.
11 Chattopadhyay, A., N. B. Bhatnagar, and R. Bhatnagar. 2004. Bacterial insecticidal toxins. Crit. Rev. Microbiol. 30: 33-54.   DOI
12 Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, et al. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 807-813.
13 Dankocsik, C., W. P. Donovan, and C. S. Jany. 1990. Activation of a cryptic crystal protein gene of Bacillus thuringiensis subspecies kurstaki by gene fusion and determination of the crystal protein insecticidal specificity. Mol. Microbiol. 4: 2087-2094.   DOI
14 Donovan, P. V., C. C. Dankocsik, M. P. Gilbert, M. C. Gawron- Burke, R. G. Groat, and B. C. Carlton. 1988. Amino acid sequence and entomocidal activity of the P2 crystal protein. J. Biol. Chem. 263: 561-567.
15 Federici, B. A. 2007. Bacteria as biological control agents for insects: Economics, engineering, and environmental safety, pp. 25-51. In M. Vurro and J. Gressel (eds.). Novel Biotechnologies for Biocontrol Agent Enhancement and Management. Springer, Amsterdam.
16 Jahn, N., W. Schnetter, and K. Geider. 1987. Cloning of an insecticidal toxin gene of Bacillus thuringiensis subsp. tenebrionis and its expression in Escherichia coli cells. FEMS Microbiol. Lett. 48: 311-315.   DOI
17 Fischhoff, D. A., K. S. Bowdish, F. J. Perlak, P. G. Marrone, S. M. McCormick, J. G. Nidermeyer, et al. 1987. Insect tolerant transgenic tomato plants. Bio/Technology 5: 807-813.
18 Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. 41: 95-98.
19 Hofte, H. and H. R. Whiteley. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242-255.
20 Kati, H., K. Sezen, A. O. Belduz, and Z. Demirbag. 2005. Characterization of a Bacillus thuringiensis subsp kurstaki strain isolated from Malacosoma neustria L. (Lepidoptera : Lasiocampidae). Biol. Bratislava 60: 301-305.
21 Kumar, S., M. Nei, J. Dudley, and K. Tamura. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 4: 299-306.
22 Lereclus, D., O. Arantes, J. Chaufaux, and M. M. Lecadet. 1989. Transformation and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 60: 211-218.
23 Li, M. S., J. Y. Choi, J. Y. Roh, H. J. Shim, J. N. Kang, Y. S. Kim, et al. 2007. Identification and molecular characterization of novel cry1-type toxin genes from Bacillus thuringiensis K1 isolated in Korea. J. Microbiol. Biotechnol. 17: 15-20.
24 Liang, H., Y. Liu, J. Zhu, P. Guan, S. Li, S. Wang, et al. 2011. Characterization of cry2-type genes of Bacillus thuringiensis strains from soil-isolated of Sichuan basin, China. Braz. J. Microbiol. 42: 140-146.   DOI
25 Peferoen, M. 1997. Insect control with transgenic plants expressing Bacillus thuringiensis crystal proteins, pp. 21-48. In N. Carozzi and M. Koziel (eds.). Advances in Insect Control, the Role of Transgenic Plants. Taylor and Francis, Bristol.
26 Lima, G. M. S., R. W. S. Aguiar, R. F. T. Correa, E. S. Martins, A. C. M. Gomes, T. Nagata, et al. 2008. Cry2A toxins from Bacillus thuringiensis expressed in insect cells are toxic to two lepidopteran insects. World J. Microbiol. Biotechnol. 24: 2941-2948.   DOI
27 McGaughey, W. H. 1985. Evaluation of Bacillus thuringiensis for controlling Indianmeal moths (Lep. Pyralidae) in farm grain bins and silos. J. Econ. Entomol. 78: 1089-1094.   DOI
28 Murphy, R. C. and S. E. Stevens. 1992. Cloning and expression of the cryIVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium Agmenellum quadruplicatum PR-6 and its resulting larvicidal activity. Appl. Environ. Microbiol. 58: 1650-1655.
29 Perlak, F. J., R. W. Deaton, T. A. Armstrong, R. L. Fuchs, S. R. Sims, J. T. Greenplate, and D. A. Fischhoff. 1990. Insect resistant cotton plants. Bio/Technology 8: 939-943.
30 Raddadi, N., A. Cherif, H. Ouzari, M. Marzorati, L. Brusetti, A. Boudabous, and D. Daffonchio. 2007. Bacillus thuringiensis beyond insect biocontrol: Plant growth promotion and biosafety of polyvalent strains. Ann. Microbiol. 57: 481-494.   DOI
31 Roh, J. Y., J. Y. Choi, M. S. Li, B. R. Jin, and Y. H. Je. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17: 547-559.
32 Romeis, J., M. Meissle, and F. Bigler. 2006. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat. Biotechnol. 24: 63-71.   DOI
33 Schnepf, H. E. and H. R. Whiteley. 1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 2893-2897.   DOI
34 Saleem, F. and A. R. Shakoori. 2010. Characterization of cry2A-type gene(s) from Pakistani isolates of Bacillus thuringiensis toxic to Lepidopteran and Dipteran insects. Pakistan J. Zool. 42: 181-193.
35 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, pp. 191-195. Second Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
36 Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, et al. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806.
37 Skot, L. S., P. Harrison, A. Nath, R. Mytton, and B. C. Clifford. 1990. Expression of insecticidal activity in Rhizobium containing the $\delta$-endotoxin gene cloned from Bacillus tenebrionis subsp. tenebrionis. Plant Soil 127: 285-295.   DOI
38 Stock, C. A., T. J. McLoughlin, J. A. Klein, and M. J. Adang. 1990. Expression of a Bacillus thuringiensis crystal proteins gene in Pseudomonas cepacia 526. Can. J. Microbiol. 36: 879-884.   DOI
39 Tabashnik, B. E., T. J. Dennehy, M. A. Sims, K. Larkin, G. P. Head, W. J. Moar, and Y. Carriere. 2002. Control of resistant pink bollworm (Pectinophora gossypiella) by transgenic cotton that produces Bacillus thuringiensis toxin Cry2Ab. Appl. Environ. Microbiol. 68: 3790-3794.   DOI
40 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI
41 Vidal-Quist, J. C., P. Castanera, and J. Gonzalez-Cabrera. 2009. Diversity of Bacillus thuringiensis strains isolated from citrus orchards in Spain and evaluation of their insecticidal activity against Ceratitis capitata. J. Microbiol. Biotechnol. 19: 749-
42 Theoduloz, C., A. Vega, M. Salazar, E. Gonzalez, and L. Meza- Basso. 2003. Expression of a Bacillus thuringiensis $\delta$-endotoxin cry1Ab gene in Bacillus subtilis and Bacillus licheniformis strains that naturally colonize the phylloplane of tomato plants (Lycopersicon esculentum, Mills). J. Appl. Microbiol. 94: 375-381.   DOI
43 Tounsi, S. and S. Jaoua. 2003. Characterization of a novel cry2Aa-type gene from Bacillus thuringiensis subsp. kurstaki. Biotechnol. Lett. 25: 1219-1223.   DOI
44 Vaeck, M., A. Reybnaerts, J. Höfte, S. Jansens, M. DeBeuckeleer, C. Dean, et al. 1987. Transgenic plants protected from insect attack. Nature 328: 33-37.   DOI
45 Winder, W. R. and H. R. Whiteley. 1989. Two highly related crystal proteins of Bacillus thuringiensis serovar. kurstaki possess different host range specificities. J. Bacteriol. 171: 965-974.   DOI
46 Wu, D., X. L. Cao, Y. Y. Bai, and A. I. Aronson. 1991. Sequencing of an operon containing a novel $\delta$-endotoxin gene from Bacillus thuringiensis. FEMS Microbiol. Lett. 81: 31-36.
47 Yamamoto, T. and R. E. Mclaughlin. 1981. Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. kurstaki toxic to the mosquito larva, Aedes taeniorhynchus. Biochem. Biophys. Res. Commun. 103: 414-421.   DOI
48 Zheng, A., J. Zhu, F. Tan, P. Guan, X. Yu, S. Wang, et al. 2010. Characterization and expression of a novel haplotype cry2Atype gene from Bacillus thuringiensis strain JF19-2. Ann. Microbiol. 60: 129-134.   DOI