References
- Abdulla, H. M. 2007. Enhancement of rice straw composting by lignocellulolytic actinomycete strains. Int. J. Agric. Biol. 9: 106-109.
- Cai, J. and S. Alimujiang. 2009. Kinetic analysis of wheat straw oxidative pyrolysis using thermogravimetric analysis: Statistical description and isoconversional kinetic analysis. Ind. Eng. Chem. Res. 48: 619-624. https://doi.org/10.1021/ie801299z
- Cocolin, L., L. F. Bisson, and D. A. Mills. 2000. Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol. Lett. 189: 81-87. https://doi.org/10.1111/j.1574-6968.2000.tb09210.x
- Dejonghe, W., N. Boon, D. Seghers, E. M. Top, and W. Verstraete. 2001. Bioaugmentation of soils by increasing microbial richness: Missing links. Environ. Microbiol. 3: 649-657. https://doi.org/10.1046/j.1462-2920.2001.00236.x
- Guo, P., W. Zhu, H. Wang, Y. C. Lü, X. F. Wang, D. Zheng, and Z. J. Cui. 2010. Functional characteristics and diversity of a novel lignocelluloses degrading composite microbial system with high xylanase activity. J. Microbiol. Biotechnol. 20: 254-264.
- Halsall, D. M. and A. H. Gibson. 1986. Comparison of two Cellulomonas strains and their interaction with Azospirillum brasilense in degradation of wheat straw and associated nitrogen fixation. Appl. Environ. Microbiol. 51: 855-861.
- Halvorson, A. D., B. J. Wienhold, and A. L. Black. 2002. Tillage, nitrogen and cropping system effects on soil carbon sequestration. Soil Sci. Soc. Am. J. 66: 906-912. https://doi.org/10.2136/sssaj2002.9060
- Haruta, S., Z. Cui, Z. Huang, M. Li, M. Ishii, and Y. Igarashi. 2002. Construction of a stable microbial community with high cellulose-degradation ability. Appl. Microbiol. Biotechnol. 59: 529-534. https://doi.org/10.1007/s00253-002-1026-4
- Ho, W. C. and W. H. Ko. 1985. Soil microbiostasis: Effects of environmental and edaphic factors. Soil Biol. Biochem. 17: 167-170. https://doi.org/10.1016/0038-0717(85)90110-5
- Jeanmougin, F., J. D. Thompson, M. Gouyg, D. G. Higgins, and T. J. Gibson. 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23: 403-405. https://doi.org/10.1016/S0968-0004(98)01285-7
- Joshi, S. R., G. D. Sharma, and R. R. Mishra. 1993. Microbial enzyme activities related to litter decomposition near a highway in a sub tropical forest of north east India. Soil Biol. Biochem. 22: 51-55.
- Juhanson, J., J. Truu, E. Heinaru, and A. Heinaru. 2009. Survival and catabolic performance of introduced Pseudomonas strains during phytoremediation and bioaugmentation experiment. FEMS Microbiol. Ecol. 70: 446-455. https://doi.org/10.1111/j.1574-6941.2009.00754.x
- Kato, S., S. Haruta, Z. J. Cui, M. Ishii, and Y. Igarashi. 2004. Effective cellulose degradation by mixed-culture system composed of a cellulolytic Clostridia and aerobic non-cellulolytic bacteria. FEMS Microbiol. Ecol. 51: 133-142. https://doi.org/10.1016/j.femsec.2004.07.015
- Kato, S., S. Haruta, Z. J. Cui, M. Ishii, and Y. Igarashi. 2005. Stable coexistence of five bacterial strains as a cellulosedegrading community. Appl. Environ. Microbiol. 71: 7099-7106. https://doi.org/10.1128/AEM.71.11.7099-7106.2005
- Li, P. P., X. J. Wang, X. F. Yuan, X. F. Wang, Y. Z. Cao, and Z. J. Cui. 2011. Screening of a composite microbial system and its characteristics of wheat straw degradation. Agric. Sci. China 10: 1586-1594. https://doi.org/10.1016/S1671-2927(11)60155-7
- Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
- Pandya, U. and M. Saraf. 2010. Application of fungi as a biocontrol agent and their biofertilizer potential in agriculture. J. Adv. Dev. Res. 1: 90-99.
- Ruberto, L., S. C. Vazquez, and W. P. Mac Cormack. 2003. Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated antarctic soil. Int. Biodeter. Biodegrad. 52: 115-125. https://doi.org/10.1016/S0964-8305(03)00048-9
- Sagova, M. M., L. Cermak, J. Novotna, K. Plhackova, J. Forstova, and J. Kopecky. 2008. Innovative methods for soil DNA purification tested in soils of widely differing characteristics. Appl. Environ. Microbiol. 74: 2902-2907. https://doi.org/10.1128/AEM.02161-07
- Saffigna, P. G., D. S. Powlson, P. C. Brookes, and G. A. Thomas. 1989. Influence of sorghum residues and tillage on soil organic matter and soil microbial biomass in an Australian Vertisol. Soil Biol. Biochem. 21: 759-765. https://doi.org/10.1016/0038-0717(89)90167-3
- Singer, A. C., D. Smith, W. A. Jury, K. Hathuc, and D. E. Crowley. 2003. Impact of the plant rhizosphere and augmentation on remediation of polychlorinated biphenyl contaminated soil. Environ. Toxicol. Chem. 22: 1998-2004. https://doi.org/10.1897/02-471
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software Version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
- van Veen, J. A., L. S. van Overbeek, and J. D. van Elsas. 1997. Fate and activity of microorganisms introduced into soil. Microbiol. Mol. Biol. Rev. 61: 121-135.
- Wang, J. G. and L. R. Bakken. 1997. Competition for nitrogen during decomposition of plant residues: Effect of spatial placement of N-rich and N-poor plant residues. Soil Biol. Biochem. 29: 153-162. https://doi.org/10.1016/S0038-0717(96)00291-X
- Wang, X. J., X. F. Yuan, H. Wang, J. J. Li, X. F. Wang, and Z. J. Cui. 2011. Characteristics and community diversity of a wheat straw-colonizing microbial community. Afr. J. Biotechnol. 40: 7853-7861.
- Yadav, K. S., M. M. Mishra, and K. K. Kapoor. 1982. The effect of fungal inoculation on composting. Agric. Wastes 4: 329-333. https://doi.org/10.1016/0141-4607(82)90029-4
- Zhao, Y., W. Li, Z. Zhou, L. Wang, Y. Pan, and L. P. Zhao. 2005. Dynamics of microbial community structure and cellulolytic activity in agricultural soil amended with two biofertilizers. Eur. J. Soil Biol. 41: 21-29. https://doi.org/10.1016/j.ejsobi.2005.03.002
Cited by
- Degradation of Lignocelluloses in Rice Straw by BMC-9, a Composite Microbial System vol.24, pp.5, 2012, https://doi.org/10.4014/jmb.1310.10089
- Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification vol.6, pp.None, 2015, https://doi.org/10.3389/fmicb.2015.01046
- Production, purification and characterization of an acid/alkali and thermo tolerant cellulase from Schizophyllum commune NAIMCC-F-03379 and its application in hydrolysis of lignocellulosic wastes vol.8, pp.1, 2012, https://doi.org/10.1186/s13568-018-0696-y
- Effect of wheat straw and cellulose degrading fungi of genus Trichoderma on soil respiration and cellulase, betaglucosidase and soil carbon content vol.10, pp.4, 2012, https://doi.org/10.15547/10.15547/ast.2018.04.064
- An Approach to Improve Soil Quality: a Case Study of Straw Incorporation with a Decomposer Under Full Film-Mulched Ridge-Furrow Tillage on the Semiarid Loess Plateau, China vol.20, pp.1, 2012, https://doi.org/10.1007/s42729-019-00106-y
- Productivity of a cereal-row crop rotation in the context of an applied biologization practice vol.32, pp.None, 2012, https://doi.org/10.1051/bioconf/20213202013