References
-
Arnstein, H. R. V. and R. Bentley. 1953. The biosynthesis of kojic acid. 1. Production from [1-
$^{14}C$ ] and [3:4-$^{14}C_2$ ] glucose and [2-$^{14}C$ ]-1:3-dihydroxyacetone. Biochem. J. 54: 493-508. https://doi.org/10.1042/bj0540493 - Bentley, R. 2006. From miso, sake and shoyu to cosmetics: A century of science for kojic acid. Nat. Prod. Rep. 23: 1046-1062. https://doi.org/10.1039/b603758p
- Benzie, I. F. F. and J. J. Strain. 1996. Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 239: 70-76. https://doi.org/10.1006/abio.1996.0292
- Blandino, A., M. E. Al-Aseeri, S. S. Pandiella, D. Cantero, and C. Webb. 2003. Cereal-based fermented food and beverages. Food Res. Int. 36: 527-543. https://doi.org/10.1016/S0963-9969(03)00009-7
- Brennan, L. 2008. Session 2: Personalised nutrition metabolomic applications in nutritional research. Proc. Nutr. Soc. 67: 404-408. https://doi.org/10.1017/S0029665108008719
- Burdock, G. A., M. G. Soni, and I. G. Carabin. 2001. Evaluation of health aspects of kojic acid in food. Regul. Toxicol. Pharmacol. 33: 80-101. https://doi.org/10.1006/rtph.2000.1442
- Buscher, J. M., D. Czernik, J. C. Ewald, U. Sauer, and N. Zanboni. 2009. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal. Chem. 81: 2135-2143. https://doi.org/10.1021/ac8022857
- Dietz, B. M., Y. H. Kang, G. Liu, A. L. Eggler, P. Yao, L. R. Chadwick, et al. 2008. Xanthohumol isolated from Humulus lupulus inhibits menadione-induced DNA damage through induction of quinone reductase. Chem. Res. Toxicol. 18: 1296-1305.
- Jonsson, P., J. Gullberg, A. Nordstrom, M. Kusano, M. Kowalczyk, M. Syostrom, and T. A. Moritz. 2004. A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal. Chem. 76: 1738-1745. https://doi.org/10.1021/ac0352427
- Justesen, U., P. Knuthsen, and T. Leth. 1998. Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. J. Chromatogr. A 799: 101-110. https://doi.org/10.1016/S0021-9673(97)01061-3
- Kim, A. J., J. N. Choi, J. Y. Kim, S. B. Park, S. H. Yeo, J. H. Choi, and C. H. Lee. 2010. GC-MS based metabolite profiling of rice koji fermentation by various fungi. Biosci. Biotechnol. Biochem. 74: 2267-2272. https://doi.org/10.1271/bbb.100488
- Kim, J. H., S. H. Baek, D. H. Kim, T. Y. Choi, T. J. Yoon, J. S. Hwang, M. R. Kim, H. J. Kwon, and C. H. Lee. 2008. Downregulation of melanin synthesis by haginin A and its application to in vivo lightening model. J. Invest. Dermatol. 128: 1227-1235. https://doi.org/10.1038/sj.jid.5701177
- Ku, K. M., J. N. Choi, J. Y. Kim, J. K. Kim, L. G. Yoo, S. J. Lee, Y. S. Hong, and C. H. Lee. 2010. Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.). J. Agric. Food Chem. 58: 418-426. https://doi.org/10.1021/jf902929h
- Ku, K. M., J. Y. Kim, H. J. Park, K. H. Liu, and C. H. Lee. 2010. Application of metabolomics in the analysis of manufacturing type of pu-erh tea and composition changes with different post fermentation year. J. Agric. Food Chem. 58: 345-352. https://doi.org/10.1021/jf902818c
- Lee, J. E., G. S. Hwang, C. H. Lee, and Y. S. Hong. 2009. Metabolomics reveals alterations in both primary and secondary metabolites by wine bacteria. J. Agric. Food Chem. 57: 10772-10783. https://doi.org/10.1021/jf9028442
- Lee, M. Y., J. H. Kim, J. N. Choi, J. Y. Kim, G. S. Hwang, and C. H. Lee. 2010. The melanin synthesis inhibition and radical scavenging activities of compounds isolated from the aerial Part of Lespedeza cyrtobotrya. J. Microbiol. Biotechnol. 20: 988-994. https://doi.org/10.4014/jmb.0905.05054
- Machida, M., O. Yamada, and K. Gomi. 2008. Genomics of Aspergillus oryzae: Learning from the history of koji mold and exploration of its future. DNA Res. 15: 173-183. https://doi.org/10.1093/dnares/dsn020
- Miyake, Y., C. Ito, M. Itoigawa, and T. Osawa. 2007. Isolation of the antioxidant pyranonigrin-A from rice mold starters used in the manufacturing process of fermented foods. Biosci. Biotechnol. Biochem. 71: 2515-2521. https://doi.org/10.1271/bbb.70310
- Nurgel, C. and G. Pickering. 2005. Contribution of glycerol, ethanol and sugar to the perception of viscosity and density elicited by model white wines. J. Texture Stud. 36: 303-323. https://doi.org/10.1111/j.1745-4603.2005.00018.x
- Nigam, P. and D. Singh. 1995. Enzyme and microbial systems involved in starch processing. Enzyme Microb. Technol. 17: 770-778. https://doi.org/10.1016/0141-0229(94)00003-A
- Ogawa, A., Y. Wakisaka, T. Tanaka, T. Sakiyama, and K. Nakanishi. 1995. Development of a cylindrical apparatus for membrane-surface liquid culture and production of kojic acid using Aspergillus oryzae NRRL484. J. Ferment. Bioeng. 80: 41-45. https://doi.org/10.1016/0922-338X(95)98174-J
- Oikawa, A., F. Matsuda, M. Kusano, Y. Okazaki, and K. Saito. 2008. Rice metabolomics. Rice 1: 63-71. https://doi.org/10.1007/s12284-008-9009-4
- Pongsuwan, W., E. Fukusaki, T. Bamba, T. Yonetani, T. Yamahara, and A. Kobayashi. 2007. Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. J. Agric. Food Chem. 55: 231-236. https://doi.org/10.1021/jf062330u
- Poutanen, K. 1997. Enzymes: An important tool in the improvement of the quality of cereal foods. Trends Food Sci. Technol. 8: 300-306. https://doi.org/10.1016/S0924-2244(97)01063-7
- Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
- Shemidt, A. L., C. R. Curtis, and G. A. Bean. 1977. Electrophoretic comparisons of mycelial enzymes from aflatoxin-producing and non-producing strains of Aspergillus flavus and Aspergillus parasiticus. Can. J. Microbiol. 23: 60-67. https://doi.org/10.1139/m77-008
- Shu, X. L., T. Frank, Q. Y. Shu, and K. H. Engel. 2008. Metabolite profiling of germinating rice seeds. J. Agric. Food Chem. 56: 11612-11620. https://doi.org/10.1021/jf802671p
- Suganuma, D., K. Fujita, and K. Kitahara. 2007. Some distinguishable properties between acid-stable and neutral types of [alpha]-amylases from acid-producing koji. J. Biosci. Bioeng. 5: 353-362.
- Wishart, D. S. 2008. Metabolomics: Applications to food science and nutrition research. Trends Food Sci. Technol. 19: 482-493. https://doi.org/10.1016/j.tifs.2008.03.003
Cited by
- Naturally occurring tetramic acid products: isolation, structure elucidation and biological activity vol.4, pp.92, 2014, https://doi.org/10.1039/c4ra09047k
- Fermented Brown Rice Extract Causes Apoptotic Death of Human Acute Lymphoblastic Leukemia Cells via Death Receptor Pathway vol.178, pp.8, 2012, https://doi.org/10.1007/s12010-015-1970-y
- Metabolomics Reveal Optimal Grain Preprocessing (Milling) toward Rice Koji Fermentation vol.66, pp.11, 2012, https://doi.org/10.1021/acs.jafc.7b05131
- Intraspecies Volatile Interactions Affect Growth Rates and Exometabolomes in Aspergillus oryzae KCCM 60345 vol.28, pp.2, 2012, https://doi.org/10.4014/jmb.1711.11005
- Fathoming Aspergillus oryzae metabolomes in formulated growth matrices vol.39, pp.1, 2019, https://doi.org/10.1080/07388551.2018.1490246
- Comparative Evaluation of Six Traditional Fermented Soybean Products in East Asia: A Metabolomics Approach vol.9, pp.9, 2012, https://doi.org/10.3390/metabo9090183
- Metabolic Visualization Reveals the Distinct Distribution of Sugars and Amino Acids in Rice Koji vol.9, pp.1, 2012, https://doi.org/10.5702/massspectrometry.a0089
- Metabolite Profiling and Anti-Aging Activity of Rice Koji Fermented with Aspergillus oryzae and Aspergillus cristatus: A Comparative Study vol.11, pp.8, 2012, https://doi.org/10.3390/metabo11080524