DOI QR코드

DOI QR Code

Development of a Practical and Cost-Effective Medium for Bioethanol Production from the Seaweed Hydrolysate in Surface-Aerated Fermentor by Repeated-Batch Operation

  • Lee, Sang-Eun (Department of Biotechnology, Chungju National University) ;
  • Lee, Ji-Eun (Department of Biotechnology, Chungju National University) ;
  • Shin, Ga-Young (Department of Biotechnology, Chungju National University) ;
  • Choi, Woon-Yong (Division of Biomaterials Engineering, Kangwon National University) ;
  • Kang, Do-Hyung (Korea Ocean Research and Development Institute) ;
  • Lee, Hyeon-Yong (Division of Biomaterials Engineering, Kangwon National University) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Chungju National University)
  • Received : 2011.06.09
  • Accepted : 2011.10.08
  • Published : 2012.01.28

Abstract

To develop a practical and cost-effective medium for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum, we investigated the feasibility and performance of bioethanol production in CSL (corn-steep liquor)-containing medium, where yeast Pichia stipitis was used and the repeated batch was carried out in a surface-aerated fermentor. The optimal medium replacement time during the repeated operation was determined to be 36 h, and the surface aeration rates were 30 and 100 ml/min. Under these conditions, the repeated-batch operation was successfully carried out for 6 runs (216 h), in which the maximum bioethanol concentrations reached about 11-12 g/l at each batch operation. These results demonstrated that bioethanol production could be carried out repeatedly and steadily for 216 h. In these experiments, the total cumulative bioethanol production was 57.9 g and 58.0 g when the surface aeration rates were 30 ml/min and 100 ml/min, respectively. In addition, the bioethanol yields were 0.43 (about 84% of theoretical value) and 0.44 (about 86% of theoretical value) when the surface aeration rates were 30 ml/min and 100 ml/min, respectively. CSL was successfully used as a medium ingredient for the bioethanol production from the hydrolysate of seaweed Sargassum sagamianum, indicating that this medium may be practical and cost-effective for bioethanol production.

Keywords

References

  1. Adams, J. M., J. A. Gallagher, and I. S. Donnison. 2009. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J. Appl. Phycol. 21: 569-574. https://doi.org/10.1007/s10811-008-9384-7
  2. Amartey, S. and T. W. Jeffries. 1994. Comparison of corn steep liquor with other nutrients in the fermentation of D-xylose by Pichia stipitis CBS 6054. Biotechnol. Lett. 16: 211-214. https://doi.org/10.1007/BF01021673
  3. Chaplin, M. F. and J. F. Kennedy. 1986. Carbohydrate Analysis; A Practical Approach, pp. 3. IRL Press, Oxford, UK.
  4. Goh, C. S. and K. T. Lee. 2010. A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew. Sustain. Energy Rev. 14: 842-848. https://doi.org/10.1016/j.rser.2009.10.001
  5. Gouda, M. K., A. E. Swellam, and S. H. Omar. 2001. Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol. Res. 156: 201-207. https://doi.org/10.1078/0944-5013-00104
  6. Han, J. G., S.-H. Oh, M.-H. Jeong, S.-S. Kim, H.-B. Seo, K.-H. Jung, et al. 2009. Two-step high temperature pretreatment process for bioethanol production from rape stems. KSBB J. 24: 489-494.
  7. Harun, R., M. K. Danquah, and G. M. Forde. 2010. Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol. 85: 199-203.
  8. Horn, S. J., I. M. Aasen, and K. Ostgaard. 2000. Ethanol production from seaweed extract. J. Ind. Microbiol. Biotechnol. 25: 249-254. https://doi.org/10.1038/sj.jim.7000065
  9. Horn, S. J., I. M. Aasen, and K. Ostgaard. 2000. Production of ethanol from mannitol by Zymobacter palmae. J. Ind. Microbiol. Biotechnol. 24: 51-57. https://doi.org/10.1038/sj.jim.2900771
  10. Hull, S. R., B. Y. Yang, D. Venzke, K. Kulhavy, and R. Montgomery. 1996. Composition of corn steep water during steeping J. Agric. Food Chem. 44: 1857-1863. https://doi.org/10.1021/jf950353v
  11. John, R. P., G. S. Anisha, K. M. Nampoothiri, and A. Pandey. 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 102: 186-193. https://doi.org/10.1016/j.biortech.2010.06.139
  12. Kadam, K. L. and M. M. Newman. 1997. Development of a low-cost fermentation medium for ethanol production from biomass. Appl. Microbiol. Biotechnol. 47: 625-629. https://doi.org/10.1007/s002530050985
  13. Kona, R. P., N. Qureshi, and J. S. Pai. 2001. Production of glucose oxidase using Aspergillus niger and corn steep liquor. Bioresour. Technol. 78: 123-126. https://doi.org/10.1016/S0960-8524(01)00014-1
  14. Lawford, H. G. and J. D. Rousseau. 1997. Corn steep liquor as a cost-effective nutrition adjunct in high-performance Zymomonas ethanol fermentations. Appl. Biochem. Biotechnol. 63-65: 287-304. https://doi.org/10.1007/BF02920431
  15. Lee, P. C., S. Y. Lee, S. H. Hong, and H. N. Chang. 2003. Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E for the production of succinic acid from whey and corn steep liquor. Bioprocess Biosyst. Eng. 26: 63-67. https://doi.org/10.1007/s00449-003-0341-1
  16. Lee, P. C., W. G. Lee, S. Y. Lee, H. N. Chang, and Y. K. Chang. 2000. Fermentative production of succinic acid from glucose and corn steep liquor by Anaerobiospirillum succiniciproducens. Biotechnol. Bioprocess Eng. 5: 379-381. https://doi.org/10.1007/BF02942216
  17. Lee, S.-E., H.-J. Kim, W. Y. Choi, D. H. Kang, H.-Y. Lee, and K.-H. Jung. 2011. Optimal surface aeration rate for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum using Pichia stipitis. KSBB J. 26: 311-316. https://doi.org/10.7841/ksbbj.2011.26.4.311
  18. Lee, S. M., J. H. Kim, H. Y. Cho, H. Joo, and J. H. Lee. 2009. Production of bioethanol from brown algae by physicochemical hydrolysis. J. Korean Ind. Eng. Chem. 20: 517-521.
  19. Maddipati, P., H. K. Atiyeh, D. D. Bellmer, and R. L. Huhnke. 2011. Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresour. Technol. 102: 6494-6501. https://doi.org/10.1016/j.biortech.2011.03.047
  20. Mosier, N., R. Hendrickson, N. Ho, M. Sedlak, and M. R. Ladisch. 2005. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 96: 1986-1993. https://doi.org/10.1016/j.biortech.2005.01.013
  21. Nobe, R., Y. Sakakibara, N. Fukuda, N. Yoshida, K. Ogawa, and M. Suiko. 2003. Purification and characterization of laminaran hydrolases from Trichoderma viride. Biosci. Biotechnol. Biochem. 67: 1349-1357. https://doi.org/10.1271/bbb.67.1349
  22. Rivas, B., A. B. Moldes, J. M. Dominguez, and J. C. Parajo. 2004. Development of culture media containing spent yeast cells of Debaryomyces hansenii and corn steep liquor for lactic acid production with Lactobacillus rhamnosus. Int. J. Food Microbiol. 97: 93-98. https://doi.org/10.1016/j.ijfoodmicro.2004.05.006
  23. Robyt, J. F. and R. Mukerjea. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-202. https://doi.org/10.1016/0008-6215(94)84285-X
  24. Schroeder, H. W. 1966. Effect of corn steep liquor on mycelial growth and aflatoxin production in Aspergillus parasiticus. Appl. Environ. Microbiol. 14: 381-385.
  25. Seo, H.-B., S. S. Kim, H.-Y. Lee, and K.-H. Jung. 2009. Highlevel production of ethanol during fed-batch ethanol fermentation with a controlled aeration rate and non-sterile glucose powder feeding of Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 14: 591-598. https://doi.org/10.1007/s12257-008-0274-2
  26. Silveira, M. M., E. Wisbeck, I. Hoch, and R. Jonas. 2001. Production of glucose-fructose oxidoreductase and ethanol by Zymomonas mobilis ATCC 29191 in medium containing corn steep liquor as a source of vitamins. Appl. Microbiol. Biotechnol. 55: 442-445. https://doi.org/10.1007/s002530000569
  27. Sreenath, H. K. and T. W. Jeffries. 1996. Effect of corn steep liquor on fermentation of mixed sugars by Candida shehatae FPL-702. Appl. Biochem. Biotechnol. 57-58: 551-561. https://doi.org/10.1007/BF02941735
  28. Sreenath, H. K. and T. W. Jeffries. 2000. Production of ethanol from wood hydrolyzate by yeasts. Bioresour. Technol. 72: 253-260. https://doi.org/10.1016/S0960-8524(99)00113-3
  29. Wi, S. G., H. J. Kim, S. A. Mahadevan, D.-J. Yang, and H.-J. Bae. 2009. The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour. Technol. 100: 6658-6660. https://doi.org/10.1016/j.biortech.2009.07.017
  30. Yeon, J.-H., S.-E. Lee, W. Y. Choi, W.-S. Choi, I.-C. Kim, H.-Y. Lee, and K.-H. Jung. 2011. Bioethanol production from the hydrolysate of rape stem in a surface-aerated fermentor. J. Microbiol. Biotechnol. 21: 109-114. https://doi.org/10.4014/jmb.1008.08001
  31. Yeon, J.-H., S.-E. Lee, W. Y. Choi, D. H. Kang, H.-Y. Lee, and K.-H. Jung. 2011. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microbiol. Biotechnol. 21: 323-331.
  32. Yeon, J.-H., H.-B. Seo, S.-H. Oh, W.-S. Choi, D. H. Kang, H.- Y. Lee, and K.-H. Jung. 2010. Bioethanol production from hydrolysate of seaweed Sargassum sagamianum. KSBB J. 25: 283-288.
  33. Yoon, J. J., Y. J., Kim, S. H. Kim, H. J. Ryu, J. Y. Choi, G. S. Kim, and M. K. Shin. 2010. Production of polysaccharides and corresponding sugars from red seaweed. Adv. Mater. Res. 93-94: 463-466. https://doi.org/10.4028/www.scientific.net/AMR.93-94.463

Cited by

  1. Two-Step Process Using Immobilized Saccharomyces cerevisiae and Pichia stipitis for Ethanol Production from Ulva pertusa Kjellman Hydrolysate vol.23, pp.10, 2012, https://doi.org/10.4014/jmb.1304.04014
  2. 개선된 thin-layer chromatography를 이용한 바이오디젤 중의 글리세롤 정량분석 vol.23, pp.4, 2013, https://doi.org/10.5352/jls.2013.23.4.537
  3. Surface-aerated fermentor에서 Pachysolen tannophilus를 이용한 glycerol로 부터 ethanol 생산 vol.23, pp.7, 2012, https://doi.org/10.5352/jls.2013.23.7.886
  4. An overview of algae bioethanol production vol.38, pp.8, 2012, https://doi.org/10.1002/er.3164
  5. Semi-simultaneous Saccharification and Fermentation of Ethanol Production from Sargassum horneri and Biosorbent Production from Fermentation Residues vol.11, pp.9, 2012, https://doi.org/10.1007/s12649-019-00748-0