DOI QR코드

DOI QR Code

Characterization of Lipases from Staphylococcus aureus and Staphylococcus epidermidis Isolated from Human Facial Sebaceous Skin

  • Xie, Winny (Division of Biotechnology, The Catholic University of Korea) ;
  • Khosasih, Vivia (Division of Biotechnology, The Catholic University of Korea) ;
  • Suwanto, Antonius (Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia) ;
  • Kim, Hyung-Kwoun (Division of Biotechnology, The Catholic University of Korea)
  • Received : 2011.07.27
  • Accepted : 2011.09.15
  • Published : 2012.01.28

Abstract

Two staphylococcal lipases were obtained from Staphylococcus epidermidis S2 and Staphylococcus aureus S11 isolated from sebaceous areas on the skin of the human face. The molecular mass of both enzymes was estimated to be 45 kDa by SDS-PAGE. S2 lipase displayed its highest activity in the hydrolysis of olive oil at $32^{\circ}C$ and pH 8, whereas S11 lipase showed optimal activity at $31^{\circ}C$ and pH 8.5. The S2 lipase showed the property of cold-adaptation, with activation energy of 6.52 kcal/mol. In contrast, S11 lipase's activation energy, at 21 kcal/mol, was more characteristic of mesophilic lipases. S2 lipase was stable up to $45^{\circ}C$ and within the pH range from 5 to 9, whereas S11 lipase was stable up to $50^{\circ}C$ and from pH 6 to 10. Both enzymes had high activity against tributyrin, waste soybean oil, and fish oil. Sequence analysis of the S2 lipase gene showed an open reading frame of 2,067 bp encoding a signal peptide (35 aa), a pro-peptide (267 aa), and a mature enzyme (386 aa); the S11 lipase gene, at 2,076 bp, also encoded a signal peptide (37 aa), pro-peptide (255 aa), and mature enzyme (399 aa). The two enzymes maintained amino acid sequence identity of 98-99% with other similar staphylococcal lipases. Their microbial origins and biochemical properties may make these staphylococcal lipases isolated from facial sebaceous skin suitable for use as catalysts in the cosmetic, medicinal, food, or detergent industries.

Keywords

References

  1. Akoh, C. C., S. W. Chang, G. C. Lee, and J. F. Shaw. 2007. Enzymatic approach to biodiesel production. J. Agric. Food Chem. 55: 8995-9005. https://doi.org/10.1021/jf071724y
  2. Arpigny, J. L., J. Lamotte, and C. Gerday. 1997. Molecular adaptation to cold of an Antarctic bacterial lipase. J. Mol. Catal. B Enzym. 3: 29-35. https://doi.org/10.1016/S1381-1177(96)00041-0
  3. Christensson, B., F. J. Fehrenbach, and S. A. Hedstrom. 1985. A new serological assay for Staphylococcus aureus infections: Detection of IgG antibodies to S. aureus lipase with an enzymelinked immunosorbent assay. J. Infect. Dis. 152: 286-292. https://doi.org/10.1093/infdis/152.2.286
  4. Choo, D. W., T. Kurihara, T. Suzuki, K. Soda, and N. Esaki. 1997. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: Gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64: 486-491.
  5. Farrel, A. M., T. J. Foster, and K. T. Holland. 1993. Molecular analysis and expression of the lipase of Staphylococcus epidermidis. J. Gen. Microbiol. 139: 267-277. https://doi.org/10.1099/00221287-139-2-267
  6. Feller, G., M. Thiry, J. L. Arpigny, M. Mergeay, and C. Gerday. 1990. Lipases from psychrotrophic antarctic bacteria. FEMS Microbiol. Lett. 66: 239-244. https://doi.org/10.1111/j.1574-6968.1990.tb04004.x
  7. Grice, E. A., H. H. Kong, S. Conlan, C. B. Deming, J. Davis, A. C. Young; NISC Comparative Sequencing Program, et al. 2009. Topographical and temporal diversity of the human skin microbiome. Science 324: 1190-1192. https://doi.org/10.1126/science.1171700
  8. Griffith, J. M., A. Hamilton, G. Long, A. Mujezinovic, D. W. Warren, and K. Vij. 1997. Human skin temperature response to absorbed thermal power. In: SPIE Medical Imaging Symposium. Newport Beach, California, 2003. pp. 129-134.
  9. Gupta, R., N. Gupta, and P. Rathi. 2004. Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763-781. https://doi.org/10.1007/s00253-004-1568-8
  10. Jaeger, K. E., B. W. Dijkstra, and M. T. Reetz. 1999. Bacterial biocatalysts: Molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315-351. https://doi.org/10.1146/annurev.micro.53.1.315
  11. Jessen, B. 1995. Fermented meats, pp. 130-154. In G. Cambell-Platt and P. E. Cook (eds.). Starter Cultures for Meat Fermentation. Glasgow, Blackie Academic & Professional.
  12. Jung, W. H., H. K. Kim, C. Y. Lee, and T. K Oh. 2002. Biochemical properties and substrate specificity of lipase from Staphylococcus aureus B56. J. Microbiol. Biotechnol. 12: 25-30.
  13. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  14. Meyer, T. E., M. A. Cusanovich, and M. D. Kamen. 1986. Evidence against use of bacterial amino acid sequence data for construction of all-inclusive phylogenetic trees. Proc. Natl. Acad. Sci. USA 83: 217-220. https://doi.org/10.1073/pnas.83.2.217
  15. Pandey, A., S. Benjamin, C. R. Soccol, P. Nigam, N. Krieger, and V. T. Soccol. 1999. The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 29: 119-131.
  16. Quax, W. J. 2006. Bacterial enzymes. Prokaryotes 1: 777-796.
  17. Rollof, J., J. H. Braconier, C. Soderstrom, and P. Nilsson-Ehle. 1988. Interference of Staphylococcus aureus lipase with human granulocyte function. Eur. J. Clin. Microbiol. Infect. Dis. 7: 505-510. https://doi.org/10.1007/BF01962601
  18. Sigma-Aldrich Inc. Product information. Fish oil from Menhaden fish. http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/Product_Information_Sheet/f8020pis.Par.0001.File.tmp/f8020pis.pdf.
  19. Sayari, A., N. Agrebi, S. Jaoua, and Y. Gargouri. 2001. Biochemical and molecular characterization of Staphylococcus simulans lipase. Biochimie 83: 863-871. https://doi.org/10.1016/S0300-9084(01)01327-X
  20. Sharma, R., Y. Chisti, and U. C. Banerjee. 2001. Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19: 627-662. https://doi.org/10.1016/S0734-9750(01)00086-6
  21. Simons, J. W., M. D. Kampen, S. Riel, F. Gotz, M. R. Egmond, and H. M. Verheij. 1998. Cloning, purification and chracterisation of the lipase from Staphylococcus epidermidis: Implications for structure-function relationships of staphylococci. Eur. J. Biochem. 253: 675-683. https://doi.org/10.1046/j.1432-1327.1998.2530675.x
  22. Suzuki, T., T. Nakayama, T. Kurihara, T. Nishino, and N. Esaki. 2002. Primary structure and catalytic properties of a cold-active esterase from a psychrotroph, Acinetobacter sp. strain no. 6. isolated from Siberian soil. Biosci. Biotechnol. Biochem. 8: 1682-1690.
  23. Talon, R. and M. C. Montel. 1997. Hydrolysis of esters by staphylococci. Int. J. Food Microbiol. 36: 207-214. https://doi.org/10.1016/S0168-1605(97)00042-1
  24. Yoshizumi, H., T. Amachi, T. Kusumi, T. Tanaka, and H. Ishigooka. 1988. Hair treatment composition. US patent 4737362.

Cited by

  1. Staphylococcus saprophyticussurface-associated protein (Ssp) is associated with lifespan reduction inCaenorhabditis elegans vol.4, pp.7, 2012, https://doi.org/10.4161/viru.25875
  2. Characterization of Crude and Partially Purified Lipase fromGeotrichum candidumObtained with Different Nitrogen Sources vol.93, pp.10, 2012, https://doi.org/10.1007/s11746-016-2875-9
  3. Biochemical characterization and molecular modeling of a unique lipase from Staphylococcus arlettae JPBW‐1 vol.16, pp.8, 2012, https://doi.org/10.1002/elsc.201600074
  4. Biochemical and molecular characterization of a lipase from an Algerian isolated Staphylococcus aureus strain vol.57, pp.3, 2012, https://doi.org/10.1002/jobm.201600462
  5. Purification and biochemical characterization of an organic solvent‐tolerant and detergent‐stable lipase from Staphylococcus capitis vol.35, pp.4, 2012, https://doi.org/10.1002/btpr.2833
  6. Deleterious Effects of an Air Pollutant (NO 2 ) on a Selection of Commensal Skin Bacterial Strains, Potential Contributor to Dysbiosis? vol.11, pp.None, 2012, https://doi.org/10.3389/fmicb.2020.591839
  7. The Role of Surface Exposed Lysine in Conformational Stability and Functional Properties of Lipase from Staphylococcus Family vol.25, pp.17, 2012, https://doi.org/10.3390/molecules25173858
  8. Production, purification and biochemical characterisation of a novel lipase from a newly identified lipolytic bacterium Staphylococcus caprae NCU S6 vol.36, pp.1, 2012, https://doi.org/10.1080/14756366.2020.1861607