DOI QR코드

DOI QR Code

New Production of 5-Bromotoluhydroquinone and 4-O-Methyltoluhydroquinone from the Marine-Derived Fungus Dothideomycete sp.

  • Received : 2011.08.25
  • Accepted : 2011.09.26
  • Published : 2012.01.28

Abstract

The addition of NaBr to the fermentation medium of a marine isolate of the fungus Dothideomycete sp. resulted in induced production of two toluhydroquinone derivatives, 5-bromotoluhydroquinone (1) and 4-O-methyltoluhydroquinone (2), and two known compounds, toluhydroquinone (3) and gentisyl alcohol (4). The structures of 1 and 2 were assigned through the spectroscopic data analyses. Compounds 1-4 showed a potent antibacterial activity against the methicillin-resistant and multidrug-resistant Staphylococcus aureus (MRSA and MDRSA) with MIC (minimum inhibitory concentration) values of 6.2, 12.5, 6.2, and 12.5 ${\mu}g/ml$, respectively. Compounds 1-4 also exhibited a moderate radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) with $IC_{50}$ values of 11.0, 17.0, 12.0, and 7.0 ${\mu}M$, respectively, which were more active than the positive control, L-ascorbic acid ($IC_{50}$, 20.0 ${\mu}M$).

Keywords

References

  1. Blunt, J. W., B. R. Copp, M. H. G. Munro, P. T. Northcote, and M. R. Prinsep. 2011. Marine natural products. Nat. Prod. Rep. 28: 196-268. https://doi.org/10.1039/C005001F
  2. Clark, B. R., E. Lacey, J. H. Gill, and R. J. Capon. 2007. The effect of halide salts on the production of Gymnoascus reessii polyenylpyrroles. J. Nat. Prod. 70: 665-667. https://doi.org/10.1021/np0605283
  3. Feling, R. H., G. O. Buchanan, T. J. Mincer, C. A. Kaufman, P. R. Jensen, and W. Fenical. 2003. Salinosporamide A: A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew. Chem. Int. Ed. 42: 355-357. https://doi.org/10.1002/anie.200390115
  4. Jensen, P. R. and W. Fenical. 2000. Marine microorganisms and drug discovery: Current status and future potential, pp. 6-29. In N. Fusetani (ed.). Drugs from the Sea. Karger, Basel.
  5. Lam, K. S., G. Tsueng, K. A. McArthur, S. S. Mitchell, B. C. M. Potts, and J. Xu. 2007. Effects of halogens on the production of salinosporamides by the obligate marine actinomycete Salinispora tropica. J. Antibiot. 60: 13-19. https://doi.org/10.1038/ja.2007.2
  6. Li, X., D. Zhang, U. Lee, X. Li, J. Cheng, W. Zhu, et al. 2007. Bromomyrothenone B and botrytinone, cyclopentenone derivatives from a marine isolate of the fungus Botrytis. J. Nat. Prod. 70: 307-309. https://doi.org/10.1021/np0600548
  7. Li, Y., X. Li, and B. W. Son. 2005. Antibacterial and radical scavenging epoxycyclohexenones and aromatic polyols from a marine isolate of the fungus Aspergillus. Nat. Prod. Sci. 11: 136-138.
  8. Moriya, S., N. Ikeda, and Y. Tada. 2011. Cyclic phosphazenes bearing dihydrobenzoxazinoxy groups, their manufacture, resin compositions and moldings containing them, and electronic parts. Jpn. Kokai Tokkyo Koho. JP 2011-088873.
  9. Nenkep, V. N., K. Yun, D. Zhang, H. D. Choi, J. S. Kang, and B. W. Son. 2010. New production of halogenated pyranopyranones, bromochlamydosporols A and B, from the marine-derived fungus Fusarium tricinctum. J. Nat. Prod. 73: 2061-2063. https://doi.org/10.1021/np1005289
  10. Nenkep, V. N., K. Yun, Y. Li, H. D. Choi, J. S. Kang, and B. W. Son. 2010. New production of haloquinones, bromochlorogentisylquinones A and B, by halide salt from a marine isolate of the fungus Phoma herbarum J. Antibiot. 63: 199-201. https://doi.org/10.1038/ja.2010.15
  11. Scheepers, B. A., R. Klein, and M. T. Davies-Coleman. 2006. Synthesis of triprenylated toluquinone and toluhydroquinone metabolites from a marine-derived Penicillium fungus. Tetrahedron Lett. 47: 8243-8246. https://doi.org/10.1016/j.tetlet.2006.09.117
  12. Stadler, M., H. Anke, and O. Sterner. 1995. Metabolites with nematicidal and antimicrobial activities from the ascomycete Lachnum papyraceum. V. Production, isolation and biological activities of bromine-containing mycorrhizin and lachnumon derivatives and four additional new bioactive metabolites. J. Antibiot. 48: 149-153. https://doi.org/10.7164/antibiotics.48.149
  13. Yang, G., K. Yun, V. N. Nenkep, H. D. Choi, J. S. Kang, and B. W. Son. 2010. Induced production of halogenated diphenyl ethers from the marine-derived fungus Penicillium chrysogenum. Chem. Biodivers. 7: 2766-2770. https://doi.org/10.1002/cbdv.201000067
  14. Yun, K., C. M. Kondempudi, H. D. Choi, J. S. Kang, and B. W. Son. 2011. Microbial mannosidation of bioactive chlorogentisyl alcohol by the marine-derived fungus Chrysosporium synchronum. Chem. Pharm. Bull. 59: 499-501. https://doi.org/10.1248/cpb.59.499
  15. Zhang, D., X. Yang, J. S. Kang, H. D. Choi, and B. W. Son. 2008. Chlorohydroaspyrones A and B, antibacterial aspyrone derivatives from the marine-derived fungus Exophiala sp. J. Nat. Prod. 71: 1458-1460. https://doi.org/10.1021/np800107c

Cited by

  1. Antioxidant Marine Products in Cancer Chemoprevention vol.19, pp.2, 2012, https://doi.org/10.1089/ars.2013.5235
  2. Antibacterial products of marine organisms vol.99, pp.10, 2015, https://doi.org/10.1007/s00253-015-6553-x
  3. Antibacterial and Antifungal Compounds from Marine Fungi vol.13, pp.6, 2012, https://doi.org/10.3390/md13063479
  4. Toluhydroquinone from Aspergillus sp. suppress inflammatory mediators via nuclear factor-κB and mitogen-activated protein kinases pathways in lipopolysaccharide-induced RAW264.7 cells vol.67, pp.9, 2015, https://doi.org/10.1111/jphp.12421
  5. Production of Gentisyl Alcohol from Phoma herbarum Endophytic in Curcuma longa L. and Its Antagonistic Activity Towards Leaf Spot Pathogen Colletotrichum gloeosporioides vol.180, pp.6, 2012, https://doi.org/10.1007/s12010-016-2154-0
  6. Diversity, Chemical Constituents and Biological Activities of Endophytic Fungi Isolated from Schinus terebinthifolius Raddi vol.8, pp.6, 2020, https://doi.org/10.3390/microorganisms8060859
  7. Antioxidant Molecules from Marine Fungi: Methodologies and Perspectives vol.9, pp.12, 2012, https://doi.org/10.3390/antiox9121183