DOI QR코드

DOI QR Code

Ecotoxicity Studies of Photoactive Nanoparticles Exposed to Ultraviolet Light

자외선에 노출된 광반응성 나노물질의 생태독성 연구

  • Kim, Shin-Woong (Department of Environmental Science, Konkuk University) ;
  • Lee, Woo-Mi (Department of Environmental Science, Konkuk University) ;
  • Shin, Yu-Jin (Department of Environmental Science, Konkuk University) ;
  • An, Youn-Joo (Department of Environmental Science, Konkuk University)
  • Received : 2011.11.22
  • Accepted : 2012.01.06
  • Published : 2012.01.31

Abstract

As nanotechnology is a key industry, there is growing concern relating to the potential risk of nanoparticles. They are known to be released into the environment via various exposure routes. When nanoparticles are present in water environments, they are supposed to be illuminated by ultraviolet light, and the ecotoxicity of photoactive nanoparticles may be changed. In this study, a review of the ecotoxicity of photoactive nanoparticles, including the mechanisms of phototoxicity, are presented. In order to address this issue, studies on the ecotoxicity to soil and water organisms exposed to photoactive nanoparticles were investigated. The photoactive nanoparticles chosen for this study were zinc oxide, titanium dioxide and fullerene. Microorganisms, nematode, earthworm, algae and fish, etc., were chosen to assess the toxicity of nanoparticles using diverse methods. However, studies on the phototoxicity potentially induced by nanoparticles on UV illumination have been reviewed in only 8 studies. From a few studies, photoactive nanoparticles have shown high dissolution rates under UV conditions, with the released ions observed to profoundly influence test organisms. In addition, NPs exposed to UV produced reactive oxygen species (ROS). These ROS can induce oxidative stress in exposed organisms. Evidence of phototoxicity by nanoparticles were found based on previous studies.

현대산업에서 나노기술의 이용성이 증가되면서 나노물질이 가질 수 있는 잠재적인 위해성에 대한 관심이 증가되고 있는 추세이다. 나노물질은 다양한 경로를 통해 환경으로 유출되고 있으며, 수생태계로 유출된 나노물질은 태양광에 포함된 자외선에 노출될 개연성이 높다. 광반응성 나노물질은 광활성 조건에서 생태독성이 변화할 가능성이 있는 것으로 알려져 있다. 본 연구에서는 광반응성 나노물질이 생태계에서 자외선에 노출되었을 때 유발될 수 있는 생태독성 변화에 대한 연구동향을 파악하고자, 수서 및 토양생물을 대상으로 가용한 모든 자료를 조사하여 분석하였다. 본 연구에서 조사된 광반응성 나노물질은 zinc oxide, titanium dioxide, 그리고 fullerene이었으며, 미생물, 지렁이, 토양선충, 조류, 그리고 어류 등을 대상으로 한 나노물질 생태독성연구를 분석하였다. 그 결과, 자외선에 노출된 나노물질의 광독성영향에 대한 연구는 현재까지 매우 부족한 상태로, 현재까지 발표된 나노물질에 대한 광독성 연구는 8개였고, 일부 연구에서는 광반응성 나노물질의 광이온화와 나노물질로부터 용출된 이온독성을 함께 제시하였다. 광반응성 나노물질은 생체 내에서 산소활성종 생성을 유발하고 산화스트레스를 증가시키는 것으로 확인되었다.

Keywords

References

  1. Nel, A., Xia, T., Madler, L. and Li, N., "Toxic potential of materials at the nanolevel," Sci., 311, 622-627(2006). https://doi.org/10.1126/science.1114397
  2. Wienser, M. R., Lowry, G. V., Alarez, P., Dionysiou, D. and Biswas, P., "Assessing the risks of manufactured nanomaterials," Environ. Sci. Technol., 40, 4336-4337(2006). https://doi.org/10.1021/es062726m
  3. Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M., Li, D. and Alarez, P. J. J., "Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implication," Water Res., 42, 4591-4602(2008). https://doi.org/10.1016/j.watres.2008.08.015
  4. Oberdorster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D. and Yang, H., A report from the ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. "Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy," Part Fibre. Toxicol., 2, 8(2005). https://doi.org/10.1186/1743-8977-2-8
  5. Han, J., Qiu, W. and Gao, W., "Potential dissolution and photodissolution of ZnO thin films," J. Hazard. Mater., 178, 115-122(2010). https://doi.org/10.1016/j.jhazmat.2010.01.050
  6. Benabbou, A. K., Derriche, Z., Felix, C., Lejeune, P. and Guillard, C., "Photocatalytic inactivation of Escherischia coli Effect of concentration of $TiO_2$ and microorganism, nature, and intensity of UV irradiation," Appl. Cata. B-Environ., 76, 257-263(2007). https://doi.org/10.1016/j.apcatb.2007.05.026
  7. Brunet, L., Lyon, D. Y., Hotze, E. M., Alvarez, P. J. J. and Wiesner, M. R., "Comparative photoactivity and antibacterial properties of $C_{60}$ fullerenes and titanium dioxide nanoparticles," Environ. Sci. Technol., 43, 4355-4360(2009). https://doi.org/10.1021/es803093t
  8. Hund-Rinke, K. and Simon, M., "Ecotoxic effect of photocatalytic active nanoparticles $(TiO_2)$ on algae and daphnids," Environ. Sci. Pollut. R., 13, 225-232(2006). https://doi.org/10.1065/espr2006.06.311
  9. Ma, H., Kabengi, N. J., Bertsch, P. M., Unrine, J. M., Glenn, T. C. and Williams, P. L., "Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size," Environ. Pollut., 159, 1473-1480 (2011). https://doi.org/10.1016/j.envpol.2011.03.013
  10. Prasad, G. K., Agarwal, G. S., Singh, B., Rai, G. P. and Vijayaraghavan, R., "Photocatalytic inactivation of Bacillus anthracis by titania nanomaterials," J. Hazard. Mater., 165, 506-510(2009). https://doi.org/10.1016/j.jhazmat.2008.10.009
  11. Arfsten, D. P., Schaeffer, D. J. and Mulveny, D. C., "The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants: a review," Ecotox. Eniron. Safety., 33, 1-24(1996). https://doi.org/10.1006/eesa.1996.0001
  12. Hartmann, N. B., der Kammer, F. V., Hofmann, T., Baalousha, M., Ottoduelling, S. and Baun, A., "Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitroy effects and modification of cadmium bioavailability," Toxicol., 269, 190-197(2010). https://doi.org/10.1016/j.tox.2009.08.008
  13. Ji, J., Long, Z., and Lin, D., "Toxicity of oxide nanoparticles to the green algae Chlorella sp," Chem. Eng. J., 170, 525-530(2010).
  14. Linkous, C. A., Carter, G. J., Locuson, D. B., Ouellette, A. J., Slattery, D. K. and Smitha, L. A., "Photocatalytic inhibition of algae growth using $TiO_2$, $WO_3$, and cocatalyst modification," Environ. Sci. Technol., 34, 4754-4758(2000). https://doi.org/10.1021/es001080+
  15. Sadiq, I. M., Dalai, S., Chandrasekaran, N. and Mukherjee, A., "Ecotoxicity study of titania $(TiO_2)$ NPs on two microalgae species: Scenedesmus sp. and Chlorella sp.," Ecotoxicol. Environ. Saf., 74, 1180-1187(2011). https://doi.org/10.1016/j.ecoenv.2011.03.006
  16. Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E. and Casey, P. S., "Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and $ZnCl_2$ to a fresh water microalga (Pseudokirchneriella subcapitata): the importance of particle solubility," Environ. Sci. Technol., 41, 8484-8490 (2007). https://doi.org/10.1021/es071445r
  17. Tao, X, Fortner, J. D., Zhang, B., He, Y., Chen, Y. and Hughes, J. B., "Effects of aqueous stable fullerene nanocrystals $(nC_{60})$ on Daphnia magna: Evaluation of sub-lethal reproductive responses and accumulation," Chemosphere, 77, 1482-1487(2009). https://doi.org/10.1016/j.chemosphere.2009.10.027
  18. Tao, X., He, Y., Zhang, B., Chen, Y. and Hughes, J. B., "Effects of aqueous stable fullerene nanocrystals $(nC_{60})$ on Daphnia magna: Evaluation of hop frequency and accumulations under different conditions," J. Environ. Sci., 23, 322-329(2011). https://doi.org/10.1016/S1001-0742(10)60409-3
  19. Tervonen, K., Waissi, G., Petersen, E. J., Akkanen, J. and Kukkonen, J. V., "Analysis of fullerene-$C_{60}$ and kinetic measurements for its accumulation and depuration in Daphnia magna," Environ. Toxicol. Chem., 29, 1072-1078(2010).
  20. Zhu, X., Chang, Y., and Chen, Y., "Toxicity and bioaccumulation of $TiO_2$ nanoparticles aggregates in Daphnia magna," Chemosphere, 78, 209-215(2010). https://doi.org/10.1016/j.chemosphere.2009.11.013
  21. Kim, K. T., Klaine, S. J., Cho, J., Kim, S.-H. and Kim, S. D., "Oxidative stress responses of Daphnia magna exposed to $TiO_2$ nanoparticles according to size fraction," Sci. Total Environ., 408, 2268-2272(2010a). https://doi.org/10.1016/j.scitotenv.2010.01.041
  22. Spohn, P., Hirsch, C., Hasler, F., Bruinink, A., Krug, H. F. and Wick, P., "$C_{60}$ fullerene: A powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays," Environ. Pollut., 157, 1134-1139(2009). https://doi.org/10.1016/j.envpol.2008.08.013
  23. Darbrunz, A., Duester, L., Prasse, C., Seitz, F., Risenfeldt, R., Schilde, C., Schaumann, G. E. and Schulz, R., "Biological surface coating and molting inhibition as mechanisms of $TiO_2$ nanoparticle toxicity in Daphnia magna," Plos One, 6, e20112(2011). https://doi.org/10.1371/journal.pone.0020112
  24. Zhu, X., Zhu, L., Lang, Y. and Chen, Y., "Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induced by chronic exposure to sublethal fullerene aggregates," Environ. Toxicol. Chem., 27, 1979-1985 (2008a). https://doi.org/10.1897/07-573.1
  25. Henry, T. B., Menn, F.-M., Fleming, J. T., Wilgus, J., Compton, R. N. and Sayler, G., "Attributing effects of aqueous $C_{60}$ nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression," Environ. Health Perspect., 115, 1059(2007). https://doi.org/10.1289/ehp.9757
  26. Zhu, X., Wang, J., Zhang, X., Chang, Y. and Chen, Y., "The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio)," Nanotechnology, 20, 195103(2009b). https://doi.org/10.1088/0957-4484/20/19/195103
  27. Johnston, B. D., Scown, T. M., Moger, J., Cumberland, S. A., Baalousha, M., Linge, K., van Aerle, R., Jarvis, K., Lead, J. R. and Tyler, C. R., "Bioavailability of Nanoscale Metal Oxides $TiO_2,\;CeO_2$, and ZnO to Fish," Environ. Sci. Technol., 44, 1144-1151(2010). https://doi.org/10.1021/es901971a
  28. Bai, W., Zhang, Z., Tian, W., He, X., Ma, Y., Zhao, Y. and Chai, Z., Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J. Nanopart. Res., 12, 1645-1654(2010). https://doi.org/10.1007/s11051-009-9740-9
  29. Blckley, T. M. and McClellan-Green, P., "Toxicity of aqueous fullerene in adult and larval Fundulus heteroclitus," Environ. Toxicol. Chem., 27, 1964-1971(2008). https://doi.org/10.1897/07-632.1
  30. Kim, K.-T., Jang, M.-H., Kim, J.-Y. and Kim, S. D., "Effect of preparation methods on toxicity of fullerene water suspensions to Japanese medaka embryos," Sci. Total Environ., 208, 5606-5612(2010b).
  31. Usenko, C. Y., Harper, S. L. and Tanguay, R. L., "In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish," Carbon, 45, 1891-1898(2007). https://doi.org/10.1016/j.carbon.2007.04.021
  32. Zhu, X., Zhu, L., Duan, Z., Qi, R., Li, Y. and Lang, Y., "Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage," J. Environ. Sci. Heal. A, 43, 278-284(2008b). https://doi.org/10.1080/10934520701792779
  33. Kim, E., Kim, S.-H., Kim, H.-C., Lee S. G., Lee, S. J. and Jeong, S. W., "Growth inhibition of auqatic plant caused by silver and titanium oxide nanoparticles," Toxicol. Environ. Health, 3, 1-6(2011).
  34. Lovern, S. B., Strickler, J. R. and Klaper, R., "Behavioral and physiological changes in Daphina magna when exposed to nanoparticle suspensions (Titanium dioxide, Nano-$C_{60}$, and $C_{60}HxC_{70}Hx$)," Environ. Sic. Technol., 41, 4465-4470(2007). https://doi.org/10.1021/es062146p
  35. Zhu, X., Zhu, L., Chen, Y., and Tian, S., "Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna," J. Nanopart Res., 11, 67-75(2009a). https://doi.org/10.1007/s11051-008-9426-8
  36. Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H. C., and Kahru, A., "Toxicity of nanosized and bulk ZnO, CuO and $(TiO_2)$ to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus," Chemosphere, 71, 1308-1316(2008). https://doi.org/10.1016/j.chemosphere.2007.11.047
  37. Zhu, S., Obserdorster, E. and Haasch, M. L., "Toxicity of an engineered nanoparticle (fullerene, $C_{60}$) in two aquatic species, Daphnia and fathead minnow," Mar. Environ. Res., 62, S5-S9(2006). https://doi.org/10.1016/j.marenvres.2006.04.059
  38. Cho, M., Fortner, J. D., Hughes, J. B. and Kim, J.-H., "Escherichia coli inactivation by water-soluble, ozonated $C_{60}$ derivative: kinetics and mechanisms," Environ. Sci. Technol., 43, 7410-7415(2009). https://doi.org/10.1021/es901262z
  39. Lyon, D. Y., Brunet, L., Hinkal, G. W., Wiensner, M. R. and Alvarez, P. J. J., "Antibacterial activity of fullerene water suspension $(nC_{60})$ is not due to ROS-mediate damage," Nano Lett., 8, 1539-1543(2008). https://doi.org/10.1021/nl0726398
  40. Cho, M., Chung, H., Choi, W. and Yoon, J., "Linear correlation between inactivation of E. coli and OH radical concentration in $TiO_2$ photocatalytic disinfection," Water Res., 38, 1096-1077(2004).
  41. Banoee, M., Sief, S., Nazari, Z. E., Jafari-Fesharaki, P., Shahverdi, H. R., Moballegh, A., Moghaddam, K. M. and Shahverdi, A. R., "ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli," J. Biomed Mater Res. B., 93, 557-561(2010).
  42. Roy, A. S., Parveen, A., Koppalkar, A. R. and Prasad, M. V. N. A., "Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus," J. Biomat Nanobiotechnol., 1, 37-41(2010). https://doi.org/10.4236/jbnb.2010.11005
  43. Wahab, R., Kim, Y. S., Mishra, A., Yun, S.-I. and Shin, H.-S., "Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity," Nanoscale Res. Lett., 5, 1675-1681(2010). https://doi.org/10.1007/s11671-010-9694-y
  44. Baek, Y.-W. and An, Y.-J., "Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and $Sb_2O_3$) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus," Sci. Total Environ., 409, 1603-1608(2011). https://doi.org/10.1016/j.scitotenv.2011.01.014
  45. Hu, X., Cook, S., Wang, P. and Hwang, H., "In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles," Sci. Total Environ., 407, 3070-3072(2009). https://doi.org/10.1016/j.scitotenv.2009.01.033
  46. Wang, Z., Lee, Y.-H., Wu, B., Horst, A., Kang, Y., Tang, Y. J. and Chen D-R., "Anti-microbial activities of aerosolized transition metal oxide nanoparticles," Chemosphere, 80, 525-529(2010). https://doi.org/10.1016/j.chemosphere.2010.04.047
  47. Jiang, W., Mashayekhi, H. and Xing, B., "Bacterial toxicity comparison between nano- and micro-scaled oxide particles," Environ. Pollut., 157, 1619-1625(2009). https://doi.org/10.1016/j.envpol.2008.12.025
  48. Wang, H., Wick, R. L. and Xing, B., "Toxicity of nanoparticulate and bulk ZnO, $Al_{2}O_3$ and $TiO_2$ to the nematode Caenorhabditis elegans," Environ Pollut., 157, 1171-1177 (2009). https://doi.org/10.1016/j.envpol.2008.11.004
  49. Roh, J.-Y., Park, Y.-K., Park, K. and Choi, J., "Ecotoxicological investigation of $CeO_2$ and $TiO_2$ nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility and mortality as endpoints," Environ. Toxicol. Phar., 29, 167-172(2010). https://doi.org/10.1016/j.etap.2009.12.003
  50. Lin, D. and Xing, B., "Phytotoxicity of nanoparticles: inhibition of seed germination and root growth," Environ. Pollut., 150, 243-50(2007). https://doi.org/10.1016/j.envpol.2007.01.016
  51. Lin, D. and Xing, B., "Root uptake and phytotoxicity of ZnO nanoparticles," Environ. Sci. Technol., 42, 5580-5585 (2008). https://doi.org/10.1021/es800422x
  52. Lee, C. W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y.-C., Braam, J. and Alvarez, P. J. J., "Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana," Environ. Toxicol. Chem., 29, 669-675(2010). https://doi.org/10.1002/etc.58
  53. Stampoulis, D., Sinha, S. K. and White, J. C., "Assaydependent phytotoxicity of nanoparticles to plants," Environ. Sci. Technol., 43, 9473-9479(2009). https://doi.org/10.1021/es901695c
  54. Yang, F., Liu, C., Gao, F., Su, M., Wu, X., Zheng, L., Hong, F. and Yang, P., "The improvement of spinach growth by nano-anatase $TiO_2$ treatment is related to nitrogen photoreduction," Biol. Trace Elem. Res., 119, 77-88(2007). https://doi.org/10.1007/s12011-007-0046-4
  55. Asli, S., Neumann, P. M., "Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport," Plant Cell Environ., 32, 577-584(2009). https://doi.org/10.1111/j.1365-3040.2009.01952.x
  56. Seeger, E. M., Baun, A., Kästner, M. and Trapp, S., "Insignificant acute toxicity of $TiO_2$ nanoparticles to willow trees," J. Soil. Sediment., 9, 46-53(2009). https://doi.org/10.1007/s11368-008-0034-0
  57. Lin, S., Reppert, J., Hu, Q., Hudson, J. S., Reid, M. L., Ratnikova, T. A., Rao, A. M., Luo, H. and Ke, P. C., "Uptake, translocation, and transmission of carbon nanomaterials in rice plants," Small, 5, 1128-1132(2009).
  58. Li, D., Fortner, J. D., Johnson, D. R., Chen, C., Li, Q. and Alvarez, D. J. J., "Bioaccumulation of $^{14}C_{60}$ by the earthworm Eisenia fetida," Environ. Sci. Technol., 44, 9170-9175(2010). https://doi.org/10.1021/es1024405
  59. van der Ploeg, M. J. C., Baveco, J. M., van der Hout, A., Bakker, R., Rietjens, I. M. C. M., van den and Brink, N. W., "Effects of $C_{60}$ nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics," Environ. Pollut., 159, 198-203(2011). https://doi.org/10.1016/j.envpol.2010.09.003
  60. Lapied, E., Nahmani, J. Y., Moudilou, E., Chaurand, P., Labille, J., Rose, J., Exbrayat, J.-M., Oughton, D. H. and Joner, E. J., "Ecotoxicological effects of an aged $TiO_2$ nano composite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil," Environ. Int., 37, 1105-1110(2011). https://doi.org/10.1016/j.envint.2011.01.009
  61. Qi, B., "Acute and reproductive toxicity of nano-sized metal oxides (ZnO and $TiO_2$) to earthworms (Eisenia fetida)," Environmental Toxicology, Texas Tech University, p. 85(2009).
  62. Hu, C. W., Li, M., Cui, Y. B., Li, D. S., Chen, J. and Yang, L. Y., "Toxicological effects of $TiO_2$ and ZnO nanoparticles in soil on earthworm Eisenia fetida," Soil Biol. Biochem., 42, 586-591(2010). https://doi.org/10.1016/j.soilbio.2009.12.007
  63. Kool, P. L., Ortiz, M. D., van and Gestel, C. A .M., "Chronic toxicity of ZnO nanoparticles, non-nano ZnO and $ZnCl_2$ to Folsomia candida (Collembola) in relation to bioavailability in soil," Environ. Pollut., 159, 2713-2719(2011). https://doi.org/10.1016/j.envpol.2011.05.021
  64. Heckmann, L.-H., Hovgaard, M., Sutherland, D., Autrup, H., Besenbacher, F. and Scott-Fordsmand, J., "Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm (Eisenia fetida)," Ecotoxicol., 20, 226-233(2011). https://doi.org/10.1007/s10646-010-0574-0
  65. Hooper, H. L., Jurkschat, K., Morgan, A. J., Bailey, J., Lawlor, A. J., Spurgeon, D. J. and Svendsen, C., "Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix," Environ. Int., 37, 1111-1117(2011). https://doi.org/10.1016/j.envint.2011.02.019
  66. Tang, Y. J., Ashcroft, J. M., Chen, D., Min, G., Kim, C. -H., Murkhejee, B., Larabell, C., Keasling, J. D. and Chen F. F., "Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism," Nano Lett., 7, 754-760(2007). https://doi.org/10.1021/nl063020t
  67. Tong, Z., Bischoff, M., Nies, L., Applegate, B. and Turco, R., "Impact of fullerene $(C_{60})$ on a soil microbial community," Environ. Sci. Technol., 41, 2985-1991(2007). https://doi.org/10.1021/es061953l
  68. Aquino, A., Cham, J., Giolma, K., and Loh, M., "The effect of a fullerene water suspension on the growth, cell viability, and the membrane integrity of Escherichia coli B23," JEMI, 14, 13-20(2010).
  69. Amezaga-Madrid, P., Sileyra-Morales, R., Cordoba-Fierro, L., Nearez-Moorillon, G. V., Miki-Yoshida, M., Orrantia-Borunda, E. and Solis, F. J., "TEM evidence of ultrastructural alteration on Pseuomonas aeruginosa by photocatalytic $TiO_2$ thin films," J. Photochem. Photobiolo. B: Biolo., 70, 45-50(2003). https://doi.org/10.1016/S1011-1344(03)00054-X
  70. Kasemets, K., Ivask, A., Dubouguier, H.-C. and Kahru, A., "Toxicity of nanoparticles of ZnO, CuO and $TiO_2$ to yeast Saccharomyces cerevisiae," Toxicol. in Vitro., 23, 1116-1122 (2009). https://doi.org/10.1016/j.tiv.2009.05.015
  71. Adams, L. K., Lyon, D. Y., and Alvarez, P. J. J., "Comparative eco-toxicity of nanoscale $TiO_2$, $SiO_2$, and ZnO water suspension," Water Res., 40, 3527-3532(2006). https://doi.org/10.1016/j.watres.2006.08.004
  72. Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z. Q. and Lin, M. "Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7," J. Appl. Microbiol., 107, 1193-1201(2009). https://doi.org/10.1111/j.1365-2672.2009.04303.x
  73. Sharma, D., Rajput, J., Kaith, B. S., Kaur, M. and Sharma, S., "Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties," Thin Solid Films, 519, 1224-1229(2010). https://doi.org/10.1016/j.tsf.2010.08.073
  74. Sinha, R., Karan, R., Sinha, A., and Khare, S. K., "Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells," Bioresour. Technol., 102, 1516-1520(2011). https://doi.org/10.1016/j.biortech.2010.07.117
  75. Jin, T., Sun, D., Su, J. Y., Zhang, H. and Sue, H.-J. "Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7," J. Food Sci., 74, M46-M52(2009). https://doi.org/10.1111/j.1750-3841.2008.01013.x
  76. Ma, H., Bertsch, P. M., Glenn, T. C., Kabengi, N. J. and Williams, P. L., "Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans," Environ. Toxicol. Chem., 28, 1324-1330(2009). https://doi.org/10.1897/08-262.1
  77. Dutta, R. K., Sharma, P. K., Bhargava, R., Kumar, N. and Pandey, A. C., "Differential susceptibility of Escherichia coli cells toward transition metal-doped and matrix-embedded ZnO nanoparticles," J. Phys. Chem., 114, 5594-5599(2010). https://doi.org/10.1021/jp1004488
  78. Yang, X. Y., Edelmann, R. E. and Oris, J. T., "Suspended $C_{60}$ nanoparticles protect against short-term UV and fluoranthene photo-induced toxicity, but cause long-term cellular damage in Daphnia magna," Aquat. Toxicol., 100, 202-210 (2010). https://doi.org/10.1016/j.aquatox.2009.08.011
  79. Aruoja, V., Dubourguier, H.-C., Kasemets, K. and Kahru, A., "Toxicity of nanoparticles of CuO, ZnO and $TiO_2$ to microalgae Pseudokirchneriella subcapitata," Sci. Total Environ., 407, 1461-1468(2009). https://doi.org/10.1016/j.scitotenv.2008.10.053
  80. Meyer, J. N., Lord, C. A., Yang, X. Y., Turner, E. A., Badireddy, A. R., Marinakos, S. M., Chilkoti, A., Wienser, M. R. and Auffan, M., "Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans," Aquat. Toxicol., 100, 140-150(2010). https://doi.org/10.1016/j.aquatox.2010.07.016
  81. Lee, W.-M., Ha, S.-W., Yang, C.-Y., Lee, J.-K. and An, Y.-J.. "Effect of fluorescent silica nanoparticles in embryo and larva of Oryzias latipes: Sonic effect in nanoparticle dispersion," Chemosphere, 82, 451-459(2011). https://doi.org/10.1016/j.chemosphere.2010.09.055
  82. Farkas, J., Christian, P., Urrea, J. A. G., Roos, N., Hassellov, M., Tollefsen, K. E. and Thomas, K. V., "Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes," Aquat. Toxicol., 96, 44-52(2010). https://doi.org/10.1016/j.aquatox.2009.09.016
  83. Nagy, L. N., "Preparation and characterization of functional nanostructured thin layers composed of silica, ZnO and core/ shell silica/ZnO particles," Natural Science, Budapest University of Technology and Economics, p. 126(2008).

Cited by

  1. Preservation Conditions of Aqueous Samples Containing silver Nanomaterials vol.37, pp.4, 2015, https://doi.org/10.4491/KSEE.2015.37.4.218