References
- Nel, A., Xia, T., Madler, L. and Li, N., "Toxic potential of materials at the nanolevel," Sci., 311, 622-627(2006). https://doi.org/10.1126/science.1114397
- Wienser, M. R., Lowry, G. V., Alarez, P., Dionysiou, D. and Biswas, P., "Assessing the risks of manufactured nanomaterials," Environ. Sci. Technol., 40, 4336-4337(2006). https://doi.org/10.1021/es062726m
- Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M., Li, D. and Alarez, P. J. J., "Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implication," Water Res., 42, 4591-4602(2008). https://doi.org/10.1016/j.watres.2008.08.015
- Oberdorster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D. and Yang, H., A report from the ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. "Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy," Part Fibre. Toxicol., 2, 8(2005). https://doi.org/10.1186/1743-8977-2-8
- Han, J., Qiu, W. and Gao, W., "Potential dissolution and photodissolution of ZnO thin films," J. Hazard. Mater., 178, 115-122(2010). https://doi.org/10.1016/j.jhazmat.2010.01.050
-
Benabbou, A. K., Derriche, Z., Felix, C., Lejeune, P. and Guillard, C., "Photocatalytic inactivation of Escherischia coli Effect of concentration of
$TiO_2$ and microorganism, nature, and intensity of UV irradiation," Appl. Cata. B-Environ., 76, 257-263(2007). https://doi.org/10.1016/j.apcatb.2007.05.026 -
Brunet, L., Lyon, D. Y., Hotze, E. M., Alvarez, P. J. J. and Wiesner, M. R., "Comparative photoactivity and antibacterial properties of
$C_{60}$ fullerenes and titanium dioxide nanoparticles," Environ. Sci. Technol., 43, 4355-4360(2009). https://doi.org/10.1021/es803093t -
Hund-Rinke, K. and Simon, M., "Ecotoxic effect of photocatalytic active nanoparticles
$(TiO_2)$ on algae and daphnids," Environ. Sci. Pollut. R., 13, 225-232(2006). https://doi.org/10.1065/espr2006.06.311 - Ma, H., Kabengi, N. J., Bertsch, P. M., Unrine, J. M., Glenn, T. C. and Williams, P. L., "Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size," Environ. Pollut., 159, 1473-1480 (2011). https://doi.org/10.1016/j.envpol.2011.03.013
- Prasad, G. K., Agarwal, G. S., Singh, B., Rai, G. P. and Vijayaraghavan, R., "Photocatalytic inactivation of Bacillus anthracis by titania nanomaterials," J. Hazard. Mater., 165, 506-510(2009). https://doi.org/10.1016/j.jhazmat.2008.10.009
- Arfsten, D. P., Schaeffer, D. J. and Mulveny, D. C., "The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants: a review," Ecotox. Eniron. Safety., 33, 1-24(1996). https://doi.org/10.1006/eesa.1996.0001
- Hartmann, N. B., der Kammer, F. V., Hofmann, T., Baalousha, M., Ottoduelling, S. and Baun, A., "Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitroy effects and modification of cadmium bioavailability," Toxicol., 269, 190-197(2010). https://doi.org/10.1016/j.tox.2009.08.008
- Ji, J., Long, Z., and Lin, D., "Toxicity of oxide nanoparticles to the green algae Chlorella sp," Chem. Eng. J., 170, 525-530(2010).
-
Linkous, C. A., Carter, G. J., Locuson, D. B., Ouellette, A. J., Slattery, D. K. and Smitha, L. A., "Photocatalytic inhibition of algae growth using
$TiO_2$ ,$WO_3$ , and cocatalyst modification," Environ. Sci. Technol., 34, 4754-4758(2000). https://doi.org/10.1021/es001080+ -
Sadiq, I. M., Dalai, S., Chandrasekaran, N. and Mukherjee, A., "Ecotoxicity study of titania
$(TiO_2)$ NPs on two microalgae species: Scenedesmus sp. and Chlorella sp.," Ecotoxicol. Environ. Saf., 74, 1180-1187(2011). https://doi.org/10.1016/j.ecoenv.2011.03.006 -
Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E. and Casey, P. S., "Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and
$ZnCl_2$ to a fresh water microalga (Pseudokirchneriella subcapitata): the importance of particle solubility," Environ. Sci. Technol., 41, 8484-8490 (2007). https://doi.org/10.1021/es071445r -
Tao, X, Fortner, J. D., Zhang, B., He, Y., Chen, Y. and Hughes, J. B., "Effects of aqueous stable fullerene nanocrystals
$(nC_{60})$ on Daphnia magna: Evaluation of sub-lethal reproductive responses and accumulation," Chemosphere, 77, 1482-1487(2009). https://doi.org/10.1016/j.chemosphere.2009.10.027 -
Tao, X., He, Y., Zhang, B., Chen, Y. and Hughes, J. B., "Effects of aqueous stable fullerene nanocrystals
$(nC_{60})$ on Daphnia magna: Evaluation of hop frequency and accumulations under different conditions," J. Environ. Sci., 23, 322-329(2011). https://doi.org/10.1016/S1001-0742(10)60409-3 -
Tervonen, K., Waissi, G., Petersen, E. J., Akkanen, J. and Kukkonen, J. V., "Analysis of fullerene-
$C_{60}$ and kinetic measurements for its accumulation and depuration in Daphnia magna," Environ. Toxicol. Chem., 29, 1072-1078(2010). -
Zhu, X., Chang, Y., and Chen, Y., "Toxicity and bioaccumulation of
$TiO_2$ nanoparticles aggregates in Daphnia magna," Chemosphere, 78, 209-215(2010). https://doi.org/10.1016/j.chemosphere.2009.11.013 -
Kim, K. T., Klaine, S. J., Cho, J., Kim, S.-H. and Kim, S. D., "Oxidative stress responses of Daphnia magna exposed to
$TiO_2$ nanoparticles according to size fraction," Sci. Total Environ., 408, 2268-2272(2010a). https://doi.org/10.1016/j.scitotenv.2010.01.041 -
Spohn, P., Hirsch, C., Hasler, F., Bruinink, A., Krug, H. F. and Wick, P., "
$C_{60}$ fullerene: A powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays," Environ. Pollut., 157, 1134-1139(2009). https://doi.org/10.1016/j.envpol.2008.08.013 -
Darbrunz, A., Duester, L., Prasse, C., Seitz, F., Risenfeldt, R., Schilde, C., Schaumann, G. E. and Schulz, R., "Biological surface coating and molting inhibition as mechanisms of
$TiO_2$ nanoparticle toxicity in Daphnia magna," Plos One, 6, e20112(2011). https://doi.org/10.1371/journal.pone.0020112 - Zhu, X., Zhu, L., Lang, Y. and Chen, Y., "Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induced by chronic exposure to sublethal fullerene aggregates," Environ. Toxicol. Chem., 27, 1979-1985 (2008a). https://doi.org/10.1897/07-573.1
-
Henry, T. B., Menn, F.-M., Fleming, J. T., Wilgus, J., Compton, R. N. and Sayler, G., "Attributing effects of aqueous
$C_{60}$ nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression," Environ. Health Perspect., 115, 1059(2007). https://doi.org/10.1289/ehp.9757 - Zhu, X., Wang, J., Zhang, X., Chang, Y. and Chen, Y., "The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio)," Nanotechnology, 20, 195103(2009b). https://doi.org/10.1088/0957-4484/20/19/195103
-
Johnston, B. D., Scown, T. M., Moger, J., Cumberland, S. A., Baalousha, M., Linge, K., van Aerle, R., Jarvis, K., Lead, J. R. and Tyler, C. R., "Bioavailability of Nanoscale Metal Oxides
$TiO_2,\;CeO_2$ , and ZnO to Fish," Environ. Sci. Technol., 44, 1144-1151(2010). https://doi.org/10.1021/es901971a - Bai, W., Zhang, Z., Tian, W., He, X., Ma, Y., Zhao, Y. and Chai, Z., Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J. Nanopart. Res., 12, 1645-1654(2010). https://doi.org/10.1007/s11051-009-9740-9
- Blckley, T. M. and McClellan-Green, P., "Toxicity of aqueous fullerene in adult and larval Fundulus heteroclitus," Environ. Toxicol. Chem., 27, 1964-1971(2008). https://doi.org/10.1897/07-632.1
- Kim, K.-T., Jang, M.-H., Kim, J.-Y. and Kim, S. D., "Effect of preparation methods on toxicity of fullerene water suspensions to Japanese medaka embryos," Sci. Total Environ., 208, 5606-5612(2010b).
- Usenko, C. Y., Harper, S. L. and Tanguay, R. L., "In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish," Carbon, 45, 1891-1898(2007). https://doi.org/10.1016/j.carbon.2007.04.021
- Zhu, X., Zhu, L., Duan, Z., Qi, R., Li, Y. and Lang, Y., "Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage," J. Environ. Sci. Heal. A, 43, 278-284(2008b). https://doi.org/10.1080/10934520701792779
- Kim, E., Kim, S.-H., Kim, H.-C., Lee S. G., Lee, S. J. and Jeong, S. W., "Growth inhibition of auqatic plant caused by silver and titanium oxide nanoparticles," Toxicol. Environ. Health, 3, 1-6(2011).
-
Lovern, S. B., Strickler, J. R. and Klaper, R., "Behavioral and physiological changes in Daphina magna when exposed to nanoparticle suspensions (Titanium dioxide, Nano-
$C_{60}$ , and$C_{60}HxC_{70}Hx$ )," Environ. Sic. Technol., 41, 4465-4470(2007). https://doi.org/10.1021/es062146p - Zhu, X., Zhu, L., Chen, Y., and Tian, S., "Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna," J. Nanopart Res., 11, 67-75(2009a). https://doi.org/10.1007/s11051-008-9426-8
-
Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H. C., and Kahru, A., "Toxicity of nanosized and bulk ZnO, CuO and
$(TiO_2)$ to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus," Chemosphere, 71, 1308-1316(2008). https://doi.org/10.1016/j.chemosphere.2007.11.047 -
Zhu, S., Obserdorster, E. and Haasch, M. L., "Toxicity of an engineered nanoparticle (fullerene,
$C_{60}$ ) in two aquatic species, Daphnia and fathead minnow," Mar. Environ. Res., 62, S5-S9(2006). https://doi.org/10.1016/j.marenvres.2006.04.059 -
Cho, M., Fortner, J. D., Hughes, J. B. and Kim, J.-H., "Escherichia coli inactivation by water-soluble, ozonated
$C_{60}$ derivative: kinetics and mechanisms," Environ. Sci. Technol., 43, 7410-7415(2009). https://doi.org/10.1021/es901262z -
Lyon, D. Y., Brunet, L., Hinkal, G. W., Wiensner, M. R. and Alvarez, P. J. J., "Antibacterial activity of fullerene water suspension
$(nC_{60})$ is not due to ROS-mediate damage," Nano Lett., 8, 1539-1543(2008). https://doi.org/10.1021/nl0726398 -
Cho, M., Chung, H., Choi, W. and Yoon, J., "Linear correlation between inactivation of E. coli and OH radical concentration in
$TiO_2$ photocatalytic disinfection," Water Res., 38, 1096-1077(2004). - Banoee, M., Sief, S., Nazari, Z. E., Jafari-Fesharaki, P., Shahverdi, H. R., Moballegh, A., Moghaddam, K. M. and Shahverdi, A. R., "ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli," J. Biomed Mater Res. B., 93, 557-561(2010).
- Roy, A. S., Parveen, A., Koppalkar, A. R. and Prasad, M. V. N. A., "Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus," J. Biomat Nanobiotechnol., 1, 37-41(2010). https://doi.org/10.4236/jbnb.2010.11005
- Wahab, R., Kim, Y. S., Mishra, A., Yun, S.-I. and Shin, H.-S., "Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity," Nanoscale Res. Lett., 5, 1675-1681(2010). https://doi.org/10.1007/s11671-010-9694-y
-
Baek, Y.-W. and An, Y.-J., "Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and
$Sb_2O_3$ ) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus," Sci. Total Environ., 409, 1603-1608(2011). https://doi.org/10.1016/j.scitotenv.2011.01.014 - Hu, X., Cook, S., Wang, P. and Hwang, H., "In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles," Sci. Total Environ., 407, 3070-3072(2009). https://doi.org/10.1016/j.scitotenv.2009.01.033
- Wang, Z., Lee, Y.-H., Wu, B., Horst, A., Kang, Y., Tang, Y. J. and Chen D-R., "Anti-microbial activities of aerosolized transition metal oxide nanoparticles," Chemosphere, 80, 525-529(2010). https://doi.org/10.1016/j.chemosphere.2010.04.047
- Jiang, W., Mashayekhi, H. and Xing, B., "Bacterial toxicity comparison between nano- and micro-scaled oxide particles," Environ. Pollut., 157, 1619-1625(2009). https://doi.org/10.1016/j.envpol.2008.12.025
-
Wang, H., Wick, R. L. and Xing, B., "Toxicity of nanoparticulate and bulk ZnO,
$Al_{2}O_3$ and$TiO_2$ to the nematode Caenorhabditis elegans," Environ Pollut., 157, 1171-1177 (2009). https://doi.org/10.1016/j.envpol.2008.11.004 -
Roh, J.-Y., Park, Y.-K., Park, K. and Choi, J., "Ecotoxicological investigation of
$CeO_2$ and$TiO_2$ nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility and mortality as endpoints," Environ. Toxicol. Phar., 29, 167-172(2010). https://doi.org/10.1016/j.etap.2009.12.003 - Lin, D. and Xing, B., "Phytotoxicity of nanoparticles: inhibition of seed germination and root growth," Environ. Pollut., 150, 243-50(2007). https://doi.org/10.1016/j.envpol.2007.01.016
- Lin, D. and Xing, B., "Root uptake and phytotoxicity of ZnO nanoparticles," Environ. Sci. Technol., 42, 5580-5585 (2008). https://doi.org/10.1021/es800422x
- Lee, C. W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y.-C., Braam, J. and Alvarez, P. J. J., "Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana," Environ. Toxicol. Chem., 29, 669-675(2010). https://doi.org/10.1002/etc.58
- Stampoulis, D., Sinha, S. K. and White, J. C., "Assaydependent phytotoxicity of nanoparticles to plants," Environ. Sci. Technol., 43, 9473-9479(2009). https://doi.org/10.1021/es901695c
-
Yang, F., Liu, C., Gao, F., Su, M., Wu, X., Zheng, L., Hong, F. and Yang, P., "The improvement of spinach growth by nano-anatase
$TiO_2$ treatment is related to nitrogen photoreduction," Biol. Trace Elem. Res., 119, 77-88(2007). https://doi.org/10.1007/s12011-007-0046-4 - Asli, S., Neumann, P. M., "Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport," Plant Cell Environ., 32, 577-584(2009). https://doi.org/10.1111/j.1365-3040.2009.01952.x
-
Seeger, E. M., Baun, A., Kästner, M. and Trapp, S., "Insignificant acute toxicity of
$TiO_2$ nanoparticles to willow trees," J. Soil. Sediment., 9, 46-53(2009). https://doi.org/10.1007/s11368-008-0034-0 - Lin, S., Reppert, J., Hu, Q., Hudson, J. S., Reid, M. L., Ratnikova, T. A., Rao, A. M., Luo, H. and Ke, P. C., "Uptake, translocation, and transmission of carbon nanomaterials in rice plants," Small, 5, 1128-1132(2009).
-
Li, D., Fortner, J. D., Johnson, D. R., Chen, C., Li, Q. and Alvarez, D. J. J., "Bioaccumulation of
$^{14}C_{60}$ by the earthworm Eisenia fetida," Environ. Sci. Technol., 44, 9170-9175(2010). https://doi.org/10.1021/es1024405 -
van der Ploeg, M. J. C., Baveco, J. M., van der Hout, A., Bakker, R., Rietjens, I. M. C. M., van den and Brink, N. W., "Effects of
$C_{60}$ nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics," Environ. Pollut., 159, 198-203(2011). https://doi.org/10.1016/j.envpol.2010.09.003 -
Lapied, E., Nahmani, J. Y., Moudilou, E., Chaurand, P., Labille, J., Rose, J., Exbrayat, J.-M., Oughton, D. H. and Joner, E. J., "Ecotoxicological effects of an aged
$TiO_2$ nano composite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil," Environ. Int., 37, 1105-1110(2011). https://doi.org/10.1016/j.envint.2011.01.009 -
Qi, B., "Acute and reproductive toxicity of nano-sized metal oxides (ZnO and
$TiO_2$ ) to earthworms (Eisenia fetida)," Environmental Toxicology, Texas Tech University, p. 85(2009). -
Hu, C. W., Li, M., Cui, Y. B., Li, D. S., Chen, J. and Yang, L. Y., "Toxicological effects of
$TiO_2$ and ZnO nanoparticles in soil on earthworm Eisenia fetida," Soil Biol. Biochem., 42, 586-591(2010). https://doi.org/10.1016/j.soilbio.2009.12.007 -
Kool, P. L., Ortiz, M. D., van and Gestel, C. A .M., "Chronic toxicity of ZnO nanoparticles, non-nano ZnO and
$ZnCl_2$ to Folsomia candida (Collembola) in relation to bioavailability in soil," Environ. Pollut., 159, 2713-2719(2011). https://doi.org/10.1016/j.envpol.2011.05.021 - Heckmann, L.-H., Hovgaard, M., Sutherland, D., Autrup, H., Besenbacher, F. and Scott-Fordsmand, J., "Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm (Eisenia fetida)," Ecotoxicol., 20, 226-233(2011). https://doi.org/10.1007/s10646-010-0574-0
- Hooper, H. L., Jurkschat, K., Morgan, A. J., Bailey, J., Lawlor, A. J., Spurgeon, D. J. and Svendsen, C., "Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix," Environ. Int., 37, 1111-1117(2011). https://doi.org/10.1016/j.envint.2011.02.019
- Tang, Y. J., Ashcroft, J. M., Chen, D., Min, G., Kim, C. -H., Murkhejee, B., Larabell, C., Keasling, J. D. and Chen F. F., "Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism," Nano Lett., 7, 754-760(2007). https://doi.org/10.1021/nl063020t
-
Tong, Z., Bischoff, M., Nies, L., Applegate, B. and Turco, R., "Impact of fullerene
$(C_{60})$ on a soil microbial community," Environ. Sci. Technol., 41, 2985-1991(2007). https://doi.org/10.1021/es061953l - Aquino, A., Cham, J., Giolma, K., and Loh, M., "The effect of a fullerene water suspension on the growth, cell viability, and the membrane integrity of Escherichia coli B23," JEMI, 14, 13-20(2010).
-
Amezaga-Madrid, P., Sileyra-Morales, R., Cordoba-Fierro, L., Nearez-Moorillon, G. V., Miki-Yoshida, M., Orrantia-Borunda, E. and Solis, F. J., "TEM evidence of ultrastructural alteration on Pseuomonas aeruginosa by photocatalytic
$TiO_2$ thin films," J. Photochem. Photobiolo. B: Biolo., 70, 45-50(2003). https://doi.org/10.1016/S1011-1344(03)00054-X -
Kasemets, K., Ivask, A., Dubouguier, H.-C. and Kahru, A., "Toxicity of nanoparticles of ZnO, CuO and
$TiO_2$ to yeast Saccharomyces cerevisiae," Toxicol. in Vitro., 23, 1116-1122 (2009). https://doi.org/10.1016/j.tiv.2009.05.015 -
Adams, L. K., Lyon, D. Y., and Alvarez, P. J. J., "Comparative eco-toxicity of nanoscale
$TiO_2$ ,$SiO_2$ , and ZnO water suspension," Water Res., 40, 3527-3532(2006). https://doi.org/10.1016/j.watres.2006.08.004 - Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z. Q. and Lin, M. "Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7," J. Appl. Microbiol., 107, 1193-1201(2009). https://doi.org/10.1111/j.1365-2672.2009.04303.x
- Sharma, D., Rajput, J., Kaith, B. S., Kaur, M. and Sharma, S., "Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties," Thin Solid Films, 519, 1224-1229(2010). https://doi.org/10.1016/j.tsf.2010.08.073
- Sinha, R., Karan, R., Sinha, A., and Khare, S. K., "Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells," Bioresour. Technol., 102, 1516-1520(2011). https://doi.org/10.1016/j.biortech.2010.07.117
- Jin, T., Sun, D., Su, J. Y., Zhang, H. and Sue, H.-J. "Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7," J. Food Sci., 74, M46-M52(2009). https://doi.org/10.1111/j.1750-3841.2008.01013.x
- Ma, H., Bertsch, P. M., Glenn, T. C., Kabengi, N. J. and Williams, P. L., "Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans," Environ. Toxicol. Chem., 28, 1324-1330(2009). https://doi.org/10.1897/08-262.1
- Dutta, R. K., Sharma, P. K., Bhargava, R., Kumar, N. and Pandey, A. C., "Differential susceptibility of Escherichia coli cells toward transition metal-doped and matrix-embedded ZnO nanoparticles," J. Phys. Chem., 114, 5594-5599(2010). https://doi.org/10.1021/jp1004488
-
Yang, X. Y., Edelmann, R. E. and Oris, J. T., "Suspended
$C_{60}$ nanoparticles protect against short-term UV and fluoranthene photo-induced toxicity, but cause long-term cellular damage in Daphnia magna," Aquat. Toxicol., 100, 202-210 (2010). https://doi.org/10.1016/j.aquatox.2009.08.011 -
Aruoja, V., Dubourguier, H.-C., Kasemets, K. and Kahru, A., "Toxicity of nanoparticles of CuO, ZnO and
$TiO_2$ to microalgae Pseudokirchneriella subcapitata," Sci. Total Environ., 407, 1461-1468(2009). https://doi.org/10.1016/j.scitotenv.2008.10.053 - Meyer, J. N., Lord, C. A., Yang, X. Y., Turner, E. A., Badireddy, A. R., Marinakos, S. M., Chilkoti, A., Wienser, M. R. and Auffan, M., "Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans," Aquat. Toxicol., 100, 140-150(2010). https://doi.org/10.1016/j.aquatox.2010.07.016
- Lee, W.-M., Ha, S.-W., Yang, C.-Y., Lee, J.-K. and An, Y.-J.. "Effect of fluorescent silica nanoparticles in embryo and larva of Oryzias latipes: Sonic effect in nanoparticle dispersion," Chemosphere, 82, 451-459(2011). https://doi.org/10.1016/j.chemosphere.2010.09.055
- Farkas, J., Christian, P., Urrea, J. A. G., Roos, N., Hassellov, M., Tollefsen, K. E. and Thomas, K. V., "Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes," Aquat. Toxicol., 96, 44-52(2010). https://doi.org/10.1016/j.aquatox.2009.09.016
- Nagy, L. N., "Preparation and characterization of functional nanostructured thin layers composed of silica, ZnO and core/ shell silica/ZnO particles," Natural Science, Budapest University of Technology and Economics, p. 126(2008).
Cited by
- Preservation Conditions of Aqueous Samples Containing silver Nanomaterials vol.37, pp.4, 2015, https://doi.org/10.4491/KSEE.2015.37.4.218