Browse > Article
http://dx.doi.org/10.4491/KSEE.2012.34.1.063

Ecotoxicity Studies of Photoactive Nanoparticles Exposed to Ultraviolet Light  

Kim, Shin-Woong (Department of Environmental Science, Konkuk University)
Lee, Woo-Mi (Department of Environmental Science, Konkuk University)
Shin, Yu-Jin (Department of Environmental Science, Konkuk University)
An, Youn-Joo (Department of Environmental Science, Konkuk University)
Publication Information
Abstract
As nanotechnology is a key industry, there is growing concern relating to the potential risk of nanoparticles. They are known to be released into the environment via various exposure routes. When nanoparticles are present in water environments, they are supposed to be illuminated by ultraviolet light, and the ecotoxicity of photoactive nanoparticles may be changed. In this study, a review of the ecotoxicity of photoactive nanoparticles, including the mechanisms of phototoxicity, are presented. In order to address this issue, studies on the ecotoxicity to soil and water organisms exposed to photoactive nanoparticles were investigated. The photoactive nanoparticles chosen for this study were zinc oxide, titanium dioxide and fullerene. Microorganisms, nematode, earthworm, algae and fish, etc., were chosen to assess the toxicity of nanoparticles using diverse methods. However, studies on the phototoxicity potentially induced by nanoparticles on UV illumination have been reviewed in only 8 studies. From a few studies, photoactive nanoparticles have shown high dissolution rates under UV conditions, with the released ions observed to profoundly influence test organisms. In addition, NPs exposed to UV produced reactive oxygen species (ROS). These ROS can induce oxidative stress in exposed organisms. Evidence of phototoxicity by nanoparticles were found based on previous studies.
Keywords
UV; Ecotoxicity; Nanoparticle; Photoactive; Phototoxicity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nel, A., Xia, T., Madler, L. and Li, N., "Toxic potential of materials at the nanolevel," Sci., 311, 622-627(2006).   DOI   ScienceOn
2 Wienser, M. R., Lowry, G. V., Alarez, P., Dionysiou, D. and Biswas, P., "Assessing the risks of manufactured nanomaterials," Environ. Sci. Technol., 40, 4336-4337(2006).   DOI   ScienceOn
3 Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M., Li, D. and Alarez, P. J. J., "Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implication," Water Res., 42, 4591-4602(2008).   DOI   ScienceOn
4 Oberdorster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D. and Yang, H., A report from the ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. "Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy," Part Fibre. Toxicol., 2, 8(2005).   DOI
5 Han, J., Qiu, W. and Gao, W., "Potential dissolution and photodissolution of ZnO thin films," J. Hazard. Mater., 178, 115-122(2010).   DOI   ScienceOn
6 Benabbou, A. K., Derriche, Z., Felix, C., Lejeune, P. and Guillard, C., "Photocatalytic inactivation of Escherischia coli Effect of concentration of $TiO_2$ and microorganism, nature, and intensity of UV irradiation," Appl. Cata. B-Environ., 76, 257-263(2007).   DOI   ScienceOn
7 Brunet, L., Lyon, D. Y., Hotze, E. M., Alvarez, P. J. J. and Wiesner, M. R., "Comparative photoactivity and antibacterial properties of $C_{60}$ fullerenes and titanium dioxide nanoparticles," Environ. Sci. Technol., 43, 4355-4360(2009).   DOI   ScienceOn
8 Hund-Rinke, K. and Simon, M., "Ecotoxic effect of photocatalytic active nanoparticles $(TiO_2)$ on algae and daphnids," Environ. Sci. Pollut. R., 13, 225-232(2006).   DOI
9 Ma, H., Kabengi, N. J., Bertsch, P. M., Unrine, J. M., Glenn, T. C. and Williams, P. L., "Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size," Environ. Pollut., 159, 1473-1480 (2011).   DOI   ScienceOn
10 Prasad, G. K., Agarwal, G. S., Singh, B., Rai, G. P. and Vijayaraghavan, R., "Photocatalytic inactivation of Bacillus anthracis by titania nanomaterials," J. Hazard. Mater., 165, 506-510(2009).   DOI   ScienceOn
11 Arfsten, D. P., Schaeffer, D. J. and Mulveny, D. C., "The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants: a review," Ecotox. Eniron. Safety., 33, 1-24(1996).   DOI   ScienceOn
12 Hartmann, N. B., der Kammer, F. V., Hofmann, T., Baalousha, M., Ottoduelling, S. and Baun, A., "Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitroy effects and modification of cadmium bioavailability," Toxicol., 269, 190-197(2010).   DOI   ScienceOn
13 Ji, J., Long, Z., and Lin, D., "Toxicity of oxide nanoparticles to the green algae Chlorella sp," Chem. Eng. J., 170, 525-530(2010).
14 Linkous, C. A., Carter, G. J., Locuson, D. B., Ouellette, A. J., Slattery, D. K. and Smitha, L. A., "Photocatalytic inhibition of algae growth using $TiO_2$, $WO_3$, and cocatalyst modification," Environ. Sci. Technol., 34, 4754-4758(2000).   DOI   ScienceOn
15 Tao, X., He, Y., Zhang, B., Chen, Y. and Hughes, J. B., "Effects of aqueous stable fullerene nanocrystals $(nC_{60})$ on Daphnia magna: Evaluation of hop frequency and accumulations under different conditions," J. Environ. Sci., 23, 322-329(2011).   DOI   ScienceOn
16 Sadiq, I. M., Dalai, S., Chandrasekaran, N. and Mukherjee, A., "Ecotoxicity study of titania $(TiO_2)$ NPs on two microalgae species: Scenedesmus sp. and Chlorella sp.," Ecotoxicol. Environ. Saf., 74, 1180-1187(2011).   DOI   ScienceOn
17 Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E. and Casey, P. S., "Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and $ZnCl_2$ to a fresh water microalga (Pseudokirchneriella subcapitata): the importance of particle solubility," Environ. Sci. Technol., 41, 8484-8490 (2007).   DOI   ScienceOn
18 Tao, X, Fortner, J. D., Zhang, B., He, Y., Chen, Y. and Hughes, J. B., "Effects of aqueous stable fullerene nanocrystals $(nC_{60})$ on Daphnia magna: Evaluation of sub-lethal reproductive responses and accumulation," Chemosphere, 77, 1482-1487(2009).   DOI   ScienceOn
19 Tervonen, K., Waissi, G., Petersen, E. J., Akkanen, J. and Kukkonen, J. V., "Analysis of fullerene-$C_{60}$ and kinetic measurements for its accumulation and depuration in Daphnia magna," Environ. Toxicol. Chem., 29, 1072-1078(2010).
20 Zhu, X., Chang, Y., and Chen, Y., "Toxicity and bioaccumulation of $TiO_2$ nanoparticles aggregates in Daphnia magna," Chemosphere, 78, 209-215(2010).   DOI   ScienceOn
21 Kim, K. T., Klaine, S. J., Cho, J., Kim, S.-H. and Kim, S. D., "Oxidative stress responses of Daphnia magna exposed to $TiO_2$ nanoparticles according to size fraction," Sci. Total Environ., 408, 2268-2272(2010a).   DOI   ScienceOn
22 Spohn, P., Hirsch, C., Hasler, F., Bruinink, A., Krug, H. F. and Wick, P., "$C_{60}$ fullerene: A powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays," Environ. Pollut., 157, 1134-1139(2009).   DOI   ScienceOn
23 Darbrunz, A., Duester, L., Prasse, C., Seitz, F., Risenfeldt, R., Schilde, C., Schaumann, G. E. and Schulz, R., "Biological surface coating and molting inhibition as mechanisms of $TiO_2$ nanoparticle toxicity in Daphnia magna," Plos One, 6, e20112(2011).   DOI
24 Johnston, B. D., Scown, T. M., Moger, J., Cumberland, S. A., Baalousha, M., Linge, K., van Aerle, R., Jarvis, K., Lead, J. R. and Tyler, C. R., "Bioavailability of Nanoscale Metal Oxides $TiO_2,\;CeO_2$, and ZnO to Fish," Environ. Sci. Technol., 44, 1144-1151(2010).   DOI   ScienceOn
25 Zhu, X., Zhu, L., Lang, Y. and Chen, Y., "Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induced by chronic exposure to sublethal fullerene aggregates," Environ. Toxicol. Chem., 27, 1979-1985 (2008a).   DOI   ScienceOn
26 Henry, T. B., Menn, F.-M., Fleming, J. T., Wilgus, J., Compton, R. N. and Sayler, G., "Attributing effects of aqueous $C_{60}$ nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression," Environ. Health Perspect., 115, 1059(2007).   DOI   ScienceOn
27 Zhu, X., Wang, J., Zhang, X., Chang, Y. and Chen, Y., "The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio)," Nanotechnology, 20, 195103(2009b).   DOI   ScienceOn
28 Bai, W., Zhang, Z., Tian, W., He, X., Ma, Y., Zhao, Y. and Chai, Z., Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J. Nanopart. Res., 12, 1645-1654(2010).   DOI
29 Blckley, T. M. and McClellan-Green, P., "Toxicity of aqueous fullerene in adult and larval Fundulus heteroclitus," Environ. Toxicol. Chem., 27, 1964-1971(2008).   DOI   ScienceOn
30 Kim, K.-T., Jang, M.-H., Kim, J.-Y. and Kim, S. D., "Effect of preparation methods on toxicity of fullerene water suspensions to Japanese medaka embryos," Sci. Total Environ., 208, 5606-5612(2010b).
31 Usenko, C. Y., Harper, S. L. and Tanguay, R. L., "In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish," Carbon, 45, 1891-1898(2007).   DOI   ScienceOn
32 Zhu, X., Zhu, L., Duan, Z., Qi, R., Li, Y. and Lang, Y., "Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage," J. Environ. Sci. Heal. A, 43, 278-284(2008b).   DOI   ScienceOn
33 Kim, E., Kim, S.-H., Kim, H.-C., Lee S. G., Lee, S. J. and Jeong, S. W., "Growth inhibition of auqatic plant caused by silver and titanium oxide nanoparticles," Toxicol. Environ. Health, 3, 1-6(2011).
34 Zhu, S., Obserdorster, E. and Haasch, M. L., "Toxicity of an engineered nanoparticle (fullerene, $C_{60}$) in two aquatic species, Daphnia and fathead minnow," Mar. Environ. Res., 62, S5-S9(2006).   DOI   ScienceOn
35 Lovern, S. B., Strickler, J. R. and Klaper, R., "Behavioral and physiological changes in Daphina magna when exposed to nanoparticle suspensions (Titanium dioxide, Nano-$C_{60}$, and $C_{60}HxC_{70}Hx$)," Environ. Sic. Technol., 41, 4465-4470(2007).   DOI   ScienceOn
36 Zhu, X., Zhu, L., Chen, Y., and Tian, S., "Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna," J. Nanopart Res., 11, 67-75(2009a).   DOI
37 Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H. C., and Kahru, A., "Toxicity of nanosized and bulk ZnO, CuO and $(TiO_2)$ to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus," Chemosphere, 71, 1308-1316(2008).   DOI   ScienceOn
38 Cho, M., Fortner, J. D., Hughes, J. B. and Kim, J.-H., "Escherichia coli inactivation by water-soluble, ozonated $C_{60}$ derivative: kinetics and mechanisms," Environ. Sci. Technol., 43, 7410-7415(2009).   DOI   ScienceOn
39 Lyon, D. Y., Brunet, L., Hinkal, G. W., Wiensner, M. R. and Alvarez, P. J. J., "Antibacterial activity of fullerene water suspension $(nC_{60})$ is not due to ROS-mediate damage," Nano Lett., 8, 1539-1543(2008).   DOI   ScienceOn
40 Cho, M., Chung, H., Choi, W. and Yoon, J., "Linear correlation between inactivation of E. coli and OH radical concentration in $TiO_2$ photocatalytic disinfection," Water Res., 38, 1096-1077(2004).
41 Banoee, M., Sief, S., Nazari, Z. E., Jafari-Fesharaki, P., Shahverdi, H. R., Moballegh, A., Moghaddam, K. M. and Shahverdi, A. R., "ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli," J. Biomed Mater Res. B., 93, 557-561(2010).
42 Roy, A. S., Parveen, A., Koppalkar, A. R. and Prasad, M. V. N. A., "Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus," J. Biomat Nanobiotechnol., 1, 37-41(2010).   DOI
43 Wang, Z., Lee, Y.-H., Wu, B., Horst, A., Kang, Y., Tang, Y. J. and Chen D-R., "Anti-microbial activities of aerosolized transition metal oxide nanoparticles," Chemosphere, 80, 525-529(2010).   DOI   ScienceOn
44 Wahab, R., Kim, Y. S., Mishra, A., Yun, S.-I. and Shin, H.-S., "Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity," Nanoscale Res. Lett., 5, 1675-1681(2010).   DOI   ScienceOn
45 Baek, Y.-W. and An, Y.-J., "Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and $Sb_2O_3$) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus," Sci. Total Environ., 409, 1603-1608(2011).   DOI   ScienceOn
46 Hu, X., Cook, S., Wang, P. and Hwang, H., "In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles," Sci. Total Environ., 407, 3070-3072(2009).   DOI   ScienceOn
47 Jiang, W., Mashayekhi, H. and Xing, B., "Bacterial toxicity comparison between nano- and micro-scaled oxide particles," Environ. Pollut., 157, 1619-1625(2009).   DOI   ScienceOn
48 Wang, H., Wick, R. L. and Xing, B., "Toxicity of nanoparticulate and bulk ZnO, $Al_{2}O_3$ and $TiO_2$ to the nematode Caenorhabditis elegans," Environ Pollut., 157, 1171-1177 (2009).   DOI   ScienceOn
49 Roh, J.-Y., Park, Y.-K., Park, K. and Choi, J., "Ecotoxicological investigation of $CeO_2$ and $TiO_2$ nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility and mortality as endpoints," Environ. Toxicol. Phar., 29, 167-172(2010).   DOI   ScienceOn
50 Lin, D. and Xing, B., "Phytotoxicity of nanoparticles: inhibition of seed germination and root growth," Environ. Pollut., 150, 243-50(2007).   DOI   ScienceOn
51 Lin, D. and Xing, B., "Root uptake and phytotoxicity of ZnO nanoparticles," Environ. Sci. Technol., 42, 5580-5585 (2008).   DOI   ScienceOn
52 Lee, C. W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y.-C., Braam, J. and Alvarez, P. J. J., "Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana," Environ. Toxicol. Chem., 29, 669-675(2010).   DOI   ScienceOn
53 Seeger, E. M., Baun, A., Kästner, M. and Trapp, S., "Insignificant acute toxicity of $TiO_2$ nanoparticles to willow trees," J. Soil. Sediment., 9, 46-53(2009).   DOI
54 Stampoulis, D., Sinha, S. K. and White, J. C., "Assaydependent phytotoxicity of nanoparticles to plants," Environ. Sci. Technol., 43, 9473-9479(2009).   DOI   ScienceOn
55 Yang, F., Liu, C., Gao, F., Su, M., Wu, X., Zheng, L., Hong, F. and Yang, P., "The improvement of spinach growth by nano-anatase $TiO_2$ treatment is related to nitrogen photoreduction," Biol. Trace Elem. Res., 119, 77-88(2007).   DOI   ScienceOn
56 Asli, S., Neumann, P. M., "Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport," Plant Cell Environ., 32, 577-584(2009).   DOI   ScienceOn
57 Lin, S., Reppert, J., Hu, Q., Hudson, J. S., Reid, M. L., Ratnikova, T. A., Rao, A. M., Luo, H. and Ke, P. C., "Uptake, translocation, and transmission of carbon nanomaterials in rice plants," Small, 5, 1128-1132(2009).
58 Li, D., Fortner, J. D., Johnson, D. R., Chen, C., Li, Q. and Alvarez, D. J. J., "Bioaccumulation of $^{14}C_{60}$ by the earthworm Eisenia fetida," Environ. Sci. Technol., 44, 9170-9175(2010).   DOI   ScienceOn
59 van der Ploeg, M. J. C., Baveco, J. M., van der Hout, A., Bakker, R., Rietjens, I. M. C. M., van den and Brink, N. W., "Effects of $C_{60}$ nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics," Environ. Pollut., 159, 198-203(2011).   DOI   ScienceOn
60 Lapied, E., Nahmani, J. Y., Moudilou, E., Chaurand, P., Labille, J., Rose, J., Exbrayat, J.-M., Oughton, D. H. and Joner, E. J., "Ecotoxicological effects of an aged $TiO_2$ nano composite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil," Environ. Int., 37, 1105-1110(2011).   DOI   ScienceOn
61 Qi, B., "Acute and reproductive toxicity of nano-sized metal oxides (ZnO and $TiO_2$) to earthworms (Eisenia fetida)," Environmental Toxicology, Texas Tech University, p. 85(2009).
62 Hooper, H. L., Jurkschat, K., Morgan, A. J., Bailey, J., Lawlor, A. J., Spurgeon, D. J. and Svendsen, C., "Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix," Environ. Int., 37, 1111-1117(2011).   DOI   ScienceOn
63 Hu, C. W., Li, M., Cui, Y. B., Li, D. S., Chen, J. and Yang, L. Y., "Toxicological effects of $TiO_2$ and ZnO nanoparticles in soil on earthworm Eisenia fetida," Soil Biol. Biochem., 42, 586-591(2010).   DOI   ScienceOn
64 Kool, P. L., Ortiz, M. D., van and Gestel, C. A .M., "Chronic toxicity of ZnO nanoparticles, non-nano ZnO and $ZnCl_2$ to Folsomia candida (Collembola) in relation to bioavailability in soil," Environ. Pollut., 159, 2713-2719(2011).   DOI   ScienceOn
65 Heckmann, L.-H., Hovgaard, M., Sutherland, D., Autrup, H., Besenbacher, F. and Scott-Fordsmand, J., "Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm (Eisenia fetida)," Ecotoxicol., 20, 226-233(2011).   DOI
66 Tang, Y. J., Ashcroft, J. M., Chen, D., Min, G., Kim, C. -H., Murkhejee, B., Larabell, C., Keasling, J. D. and Chen F. F., "Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism," Nano Lett., 7, 754-760(2007).   DOI   ScienceOn
67 Tong, Z., Bischoff, M., Nies, L., Applegate, B. and Turco, R., "Impact of fullerene $(C_{60})$ on a soil microbial community," Environ. Sci. Technol., 41, 2985-1991(2007).   DOI   ScienceOn
68 Aquino, A., Cham, J., Giolma, K., and Loh, M., "The effect of a fullerene water suspension on the growth, cell viability, and the membrane integrity of Escherichia coli B23," JEMI, 14, 13-20(2010).
69 Amezaga-Madrid, P., Sileyra-Morales, R., Cordoba-Fierro, L., Nearez-Moorillon, G. V., Miki-Yoshida, M., Orrantia-Borunda, E. and Solis, F. J., "TEM evidence of ultrastructural alteration on Pseuomonas aeruginosa by photocatalytic $TiO_2$ thin films," J. Photochem. Photobiolo. B: Biolo., 70, 45-50(2003).   DOI   ScienceOn
70 Kasemets, K., Ivask, A., Dubouguier, H.-C. and Kahru, A., "Toxicity of nanoparticles of ZnO, CuO and $TiO_2$ to yeast Saccharomyces cerevisiae," Toxicol. in Vitro., 23, 1116-1122 (2009).   DOI   ScienceOn
71 Sinha, R., Karan, R., Sinha, A., and Khare, S. K., "Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells," Bioresour. Technol., 102, 1516-1520(2011).   DOI   ScienceOn
72 Adams, L. K., Lyon, D. Y., and Alvarez, P. J. J., "Comparative eco-toxicity of nanoscale $TiO_2$, $SiO_2$, and ZnO water suspension," Water Res., 40, 3527-3532(2006).   DOI   ScienceOn
73 Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z. Q. and Lin, M. "Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7," J. Appl. Microbiol., 107, 1193-1201(2009).   DOI   ScienceOn
74 Sharma, D., Rajput, J., Kaith, B. S., Kaur, M. and Sharma, S., "Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties," Thin Solid Films, 519, 1224-1229(2010).   DOI   ScienceOn
75 Jin, T., Sun, D., Su, J. Y., Zhang, H. and Sue, H.-J. "Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7," J. Food Sci., 74, M46-M52(2009).   DOI   ScienceOn
76 Ma, H., Bertsch, P. M., Glenn, T. C., Kabengi, N. J. and Williams, P. L., "Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans," Environ. Toxicol. Chem., 28, 1324-1330(2009).   DOI   ScienceOn
77 Dutta, R. K., Sharma, P. K., Bhargava, R., Kumar, N. and Pandey, A. C., "Differential susceptibility of Escherichia coli cells toward transition metal-doped and matrix-embedded ZnO nanoparticles," J. Phys. Chem., 114, 5594-5599(2010).   DOI   ScienceOn
78 Yang, X. Y., Edelmann, R. E. and Oris, J. T., "Suspended $C_{60}$ nanoparticles protect against short-term UV and fluoranthene photo-induced toxicity, but cause long-term cellular damage in Daphnia magna," Aquat. Toxicol., 100, 202-210 (2010).   DOI   ScienceOn
79 Aruoja, V., Dubourguier, H.-C., Kasemets, K. and Kahru, A., "Toxicity of nanoparticles of CuO, ZnO and $TiO_2$ to microalgae Pseudokirchneriella subcapitata," Sci. Total Environ., 407, 1461-1468(2009).   DOI   ScienceOn
80 Meyer, J. N., Lord, C. A., Yang, X. Y., Turner, E. A., Badireddy, A. R., Marinakos, S. M., Chilkoti, A., Wienser, M. R. and Auffan, M., "Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans," Aquat. Toxicol., 100, 140-150(2010).   DOI   ScienceOn
81 Lee, W.-M., Ha, S.-W., Yang, C.-Y., Lee, J.-K. and An, Y.-J.. "Effect of fluorescent silica nanoparticles in embryo and larva of Oryzias latipes: Sonic effect in nanoparticle dispersion," Chemosphere, 82, 451-459(2011).   DOI   ScienceOn
82 Farkas, J., Christian, P., Urrea, J. A. G., Roos, N., Hassellov, M., Tollefsen, K. E. and Thomas, K. V., "Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes," Aquat. Toxicol., 96, 44-52(2010).   DOI   ScienceOn
83 Nagy, L. N., "Preparation and characterization of functional nanostructured thin layers composed of silica, ZnO and core/ shell silica/ZnO particles," Natural Science, Budapest University of Technology and Economics, p. 126(2008).