DOI QR코드

DOI QR Code

Structural, Optical, and Electrical Properties of In2O3 Thin Films Deposited on Various Buffer Layers

다양한 버퍼층 위에 증착한 In2O3 박막의 구조, 광학 및 전기적 특성

  • Kim, Moon-Hwan (Department of Automotive and Mechanical Engineering, Silla University)
  • 김문환 (신라대학교 자동차기계공학과)
  • Received : 2012.04.30
  • Accepted : 2012.06.21
  • Published : 2012.07.01

Abstract

The effects of various buffer layers on the $In_2O_3$ transparent conducting films grown on glass substrates by radio-frequency reactive magnetron sputtering were investigated. The $In_2O_3$ thin films were deposited at $400^{\circ}C$ of growth temperature and 100% of oxygen flow rate. The optical, electrical, and structural and morphological properties of the $In_2O_3$ thin films subjected to buffer layers were examined by using ultraviolet-visible spectrophotometer, Hall-effect measurements, and X-ray diffractometer, respectively. The properties of $In_2O_3$ thin films showed different results, depending on the type of buffer layer. As for the $In_2O_3$ thin film deposited on ZnO buffer layer, the average transmittance was 89% and the electrical resistivity was $7.4{\times}10^{-3}\;{\Omega}cm$. The experimental results provide a way for growing the transparent conducting film with the optimum condition by using an appropriate buffer layer.

Keywords

References

  1. P. Prathap, G. Gowri Devi, Y. P. V. Subbaiah, K. T. Ramakrishna Reddy, and V. Ganesan, Curr. Appl. Phys., 8, 120 (2008). https://doi.org/10.1016/j.cap.2007.06.001
  2. F. K. Shan, G. X. Liu, B. C. Shin, and W. J. Lee, J. Korean Phys. Soc., 54, 916 (2009). https://doi.org/10.3938/jkps.54.916
  3. S. Cho, Trans. Electr. Electron. Mater., 10, 185 (2009). https://doi.org/10.4313/TEEM.2009.10.6.185
  4. P. Malar, B. C. Mohanty, and S. Kasiviswanathan, Thin Solid Films, 488, 26 (2005). https://doi.org/10.1016/j.tsf.2005.04.019
  5. Z. Yu, Y. Li, F. Xia, and W. Xue, Surf. Coat. Technol., 204, 131 (2009). https://doi.org/10.1016/j.surfcoat.2009.06.045
  6. V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett., 88, 073508 (2006). https://doi.org/10.1063/1.2174093
  7. F. I. Lai, S. Y. Kuo, W. T. Lin, W. C. Chen, C. N. Hsiao, Y. K. Liu, and J. L. Shen, J. Cryst. Growth, 320, 32 (2011). https://doi.org/10.1016/j.jcrysgro.2010.12.020
  8. S. Cho and S. W. Cho, J. KIEEME, 25, 193 (2012).
  9. J. Kwak and S. Cho, J. Korean Vac. Soc., 19, 224 (2010). https://doi.org/10.5757/JKVS.2010.19.3.224
  10. Y. M. Lu, C. M. Chang, S. I. Tsai, and T. S. Wey, Thin Solid Films, 447, 56 (2004). https://doi.org/10.1016/j.tsf.2003.09.022
  11. H. Ko, W. P. Tai, K. C. Kim, S. H. Kim, S. J. Suh, and Y. S. Kim, J. Cryst. Growth, 277, 352 (2005). https://doi.org/10.1016/j.jcrysgro.2005.01.061