DOI QR코드

DOI QR Code

Graphene field-effect transistor for radio-frequency applications : review

  • Received : 2011.09.04
  • Accepted : 2011.12.12
  • Published : 2012.01.31

Abstract

Currently, graphene is a topic of very active research in fields from science to potential applications. For various radio-frequency (RF) circuit applications including low-noise amplifiers, the unique ambipolar nature of graphene field-effect transistors can be utilized for high-performance frequency multipliers, mixers and high-speed radiometers. Potential integration of graphene on Silicon substrates with complementary metal-oxide-semiconductor compatibility would also benefit future RF systems. The future success of the RF circuit applications depends on vertical and lateral scaling of graphene metal-oxide-semiconductor field-effect transistors to minimize parasitics and improve gate modulation efficiency in the channel. In this paper, we highlight recent progress in graphene materials, devices, and circuits for RF applications. For passive RF applications, we show its transparent electromagnetic shielding in Ku-band and transparent antenna, where its success depends on quality of materials. We also attempt to discuss future applications and challenges of graphene.

Keywords

References

  1. Geim AK, Novoselov KS. The rise of graphene. Nature Mater, 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849.
  2. Auciello O, Avouris P, Berger C, Butler JE, Carpick RW, De Heer WA, First PN, Fuhrer MS, Hersam MC, Lau CN, Liu J, MacDonald AH, Martel R, Moon JS, Seyller T, Stroscio JA, Srinivasan S, Sumant AV. Beyond silicon: carbon-based nanotechnology. MRS Bull, 35, 273 (2010). https://doi.org/10.1557/mrs2010.729
  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.
  4. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Alexei N, Conrad MEH, First PN, De Heer WA. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B, 108, 19912 (2004). http://dx.doi.org/10.1021/jp040650f.
  5. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK. Fine structure constant defines visual transparency of graphene. Science, 320, 1308 (2008). http://dx.doi.org/10.1126/science.1156965.
  6. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). http://dx.doi.org/10.1126/science.1157996.
  7. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902 (2008). http://dx.doi.org/10.1021/nl0731872.
  8. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol, 5, 574 (2010). http://dx.doi.org/10.1038/nnano.2010.132.
  9. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.
  10. Moon JS, Gaskill DK. Graphene: its fundamentals to future applications. IEEE Trans Microwave Theory Tech, 59, 2702 (2011). http://dx.doi.org/10.1109/tmtt.2011.2164617.
  11. Jornet JM, Akyildiz IF. Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band. Proceedings of the 4th European Conference on Antennas and Propagation, Barcelona, Spain (2010).
  12. Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol, 3, 270 (2008). http://dx.doi.org/10.1038/nnano.2008.83.
  13. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nature Mater, 6, 652 (2007). http://dx.doi.org/10.1038/nmat1967.
  14. Bunch JS, Van Der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL. Electromechanical resonators from graphene sheets. Science, 315, 490 (2007). http://dx.doi.org/10.1126/science.1136836.
  15. Murali R, Brenner K, Yang Y, Beck T, Meindl JD. Resistivity of graphene nanoribbon interconnects. IEEE Electron Device Lett, 30, 611 (2009). http://dx.doi.org/10.1109/led.2009.2020182.
  16. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett, 100, 016602 (2008). http://dx.doi.org/10.1103/PhysRevLett.100.016602.
  17. Akturk A, Goldsman N. Electron transport and full-band electronphonon interactions in graphene. J Appl Phys, 103, 053702 (2008). http://dx.doi.org/10.1063/1.2890147.
  18. Moon JS, Curtis D, Hu M, Wong D, Campbell P, Jernigan G, Tedesco JL. Development toward wafer-scale graphene RF electronics. ECS Trans, 19, 35 (2009). http://dx.doi.org/10.1149/1.3119525.
  19. Moon JS, Curtis D, Bui S, Marshall T, Wheeler D, Valles I, Kim S, Wang E, Weng X, Fanton M. Top-gated graphene field-effect transistors using graphene on si (111) wafers. IEEE Electron Device Lett, 31, 1193 (2010). http://dx.doi.org/10.1109/led.2010.2065792.
  20. Moon JS, Curtis D, Bui S, Hu M, Gaskill DK, Tedesco JL, Asbeck P, Jernigan GG, Vanmil BL, Myers-Ward RL, Eddy CR Jr, Campbell PM, Weng X. Top-gated epitaxial graphene FETs on siface sic wafers with a peak transconductance of 600 mS/mm. IEEE Electron Device Lett, 31, 260 (2010). http://dx.doi.org/10.1109/led.2010.2040132.
  21. Kang HC, Karasawa H, Miyamoto Y, Handa H, Fukidome H, Suemitsu T, Suemitsu M, Otsuji T. Epitaxial graphene top-gate FETs on silicon substrates. International Semiconductor Device Research Symposium, College Park, MD (2009).
  22. Wu YQ, Ye PD, Capano MA, Xuan Y, Sui Y, Qi M, Cooper JA, Shen T, Pandey D, Prakash G, Reifenberger R. Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl Phys Lett, 92, 092102 (2008). http://dx.doi.org/10.1063/1.2889959.
  23. Kedzierski J, Hsu PL, Healey P, Wyatt PW, Keast CL, Sprinkle M, Berger C, de Heer WA. Epitaxial graphene transistors on SiC substrates. IEEE Trans Electron Devices, 55, 2078 (2008). http://dx.doi.org/10.1109/ted.2008.926593.
  24. Moon JS, Curtis D, Hu M, Wong D, McGuire C, Campbell PM, Jernigan G, Tedesco JL, VanMil B, Myers-Ward R, Eddy C Jr, Gaskill DK. Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron Device Lett, 30, 650 (2009). http://dx.doi.org/10.1109/led.2009.2020699.
  25. Kedzierski J, Hsu PL, Reina A, Kong J, Healey P, Wyatt P, Keast C. Graphene-on-insulator transistors made using C on Ni chemical- vapor deposition. IEEE Electron Device Lett, 30, 745 (2009). http://dx.doi.org/10.1109/led.2009.2020615.
  26. Gaskill DK, Jernigan G, Campbell P, Tedesco JL, Culbertson J, VanMil B, Myers-Ward RL, Eddy C Jr, Moon J, Curtis D, Hu M, Wong D, McGuire C, Robinson J, Fanton M, Stitt T, Snyder D, Wang X, Frantz E. Epitaxial graphene growth on SiC wafers. ECS Trans, 19, 117 (2009). http://dx.doi.org/10.1149/1.3119535.
  27. Takagi SI, Toriumi A, Iwase M, Tango H. On the universality of inversion layer mobility in Si MOSFET's: Part I - effects of substrate impurity concentration. IEEE Trans Electron Devices, 41, 2357 (1994). http://dx.doi.org/10.1109/16.337449.
  28. Cheng ZY, Currie MT, Leitz CW, Taraschi G, Fitzgerald EA, Hoyt JL, Antoniadas DA. Electron mobility enhancement in strained- Si n-MOSFETs fabricated on SiGe-on-insulator (SGOI) substrates. IEEE Electron Device Lett, 22, 321 (2001). http://dx.doi.org/10.1109/55.930678.
  29. Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 327, 662 (2010). http://dx.doi.org/10.1126/science.1184289.
  30. Liao L, Lin YC, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang KL, Huang Y, Duan X. High-speed graphene transistors with a selfaligned nanowire gate. Nature, 467, 305 (2010). http://dx.doi.org/10.1038/nature09405.
  31. Moon JS, Wong D, Hu M, Hashimoto P, Antcliffe M, McGuire C, Micovic M, Willadson P. 55% PAE and high power Ka-band GaN HEMTs with linearized transconductance via n+ GaN source contact ledge. IEEE Electron Device Lett, 29, 834 (2008). http://dx.doi.org/10.1109/led.2008.2000792.
  32. Wang H, Nezich D, Kong J, Palacios T. Graphene frequency multipliers. IEEE Electron Device Lett, 30, 547 (2009). http://dx.doi.org/10.1109/led.2009.2016443.
  33. Wang Z, Zhang Z, Xu H, Ding L, Wang S, Peng LM. A highperformance top-gate graphene field-effect transistor based frequency doubler. Appl Phys Lett, 96, 173104 (2010). http://dx.doi.org/10.1063/1.3413959.
  34. Moon JS, Curtis D, Zehnder D, Kim S, Gaskill DK, Jernigan GG, Myers-Ward RL, Eddy CR Jr, Campbell PM, Lee KM, Asbeck P. Low-phase-noise graphene FETs in ambipolar RF applications. IEEE Electron Device Lett, 32, 270 (2011). http://dx.doi.org/10.1109/led.2010.2100074.
  35. Wang H, Hsu A, Wu J, Kong J, Palacios T. Graphene-based ambipolar RF mixers. IEEE Electron Device Lett, 31, 906 (2010). http://dx.doi.org/10.1109/led.2010.2052017.
  36. Moon JS. Graphene MOSFETs for RF applications. Proceedings of the 35th Annual GOMACTech Conference, Reno, NV (2010).

Cited by

  1. Production of Pt nanoparticles-supported chelating group-modified graphene for direct methanol fuel cells vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1662-1
  2. Preparation and electrochemical analysis of graphene/polyaniline composites prepared by aniline polymerization vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1663-0
  3. Preparation and gas-sensing properties of pitch-based carbon fiber prepared using a melt-electrospinning method vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1670-1
  4. Emerging Approaches for Graphene Oxide Biosensor vol.89, pp.1, 2017, https://doi.org/10.1021/acs.analchem.6b04248