References
- Apweiler, R., Hermjakob, H. and Sharon, N. (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. BBA-Gen. Subjects 1473, 4-8.
- An, H. J., Gip, P., Kim, J., Wu, S., Park, K. W., McVaugh, C. T., Schaffer, D. V., Bertozzi, C. R. and Lerbilla, C. B. (2011) Extensive determination of glycan heterogeneity reveals an unusual abundance of high-mannose glycans in enriched plasma membranes of human embryonic stem cells. Mol. Cell. Proteom. 11, 1-13.
- Arndt, N. X., Tiralongo, J., Madge, P. D., von Itzstein, M. and Day, C. J. (2011) Differential carbohydrate binding and cell surface glycosylation of human cancer cell lines. J. Cell. Biochem. 112, 2230-2240. https://doi.org/10.1002/jcb.23139
-
Li, Y.-L., Wu, G.-Z., Zeng, L., Dawe, G. S., Sun, L., Loers, G., Tilling, T., Cui, S.-S., Schachner, M. and Xiao, Z.-C. (2009) Cell surface sialylation and fucosylation are regulated by the cell recognition molecule L1 via
$PLC{\gamma}$ and cooperate to modulate embryonic stem cell survival and proliferation. FEBS Lett. 583, 703-710. https://doi.org/10.1016/j.febslet.2009.01.013 - Baum, L. G. (2002) Developing a taste for sweets. Immunity 16, 5-8. https://doi.org/10.1016/S1074-7613(02)00265-0
- An, H. J., Kronewitter, S. R., de Leoz, M. L. A. and Lebrilla, C. B. (2009) Glycomics and disease markers. Curr. Opin. Chem. Biol. 13, 601-607. https://doi.org/10.1016/j.cbpa.2009.08.015
- Lebrilla, C. B. and An, H. J. (2009) The prospects of glycan biomarkers for the diagnosis of diseases. Mol. BioSyst. 5, 17-20. https://doi.org/10.1039/b811781k
- An, H. J., Ninonuevo, M., Aguilan, J., Liu, H., Lebrilla, C. B., Alvarenga, L. S. and Mannis, M. J. (2005) Glycomics analyses of tear fluid for the diagnostic detection of ocular rosacea. J. Protoeme Res. 4, 1981-1987. https://doi.org/10.1021/pr0501620
- Vieira, A. C., An, H. J., Ozcan, S., Kim, J.-H., Lebrilla, C. B. and Mannis, M. J. (2012) Glycomic analysis of tear and saliva in ocular rosacea patients: the search for a biomarker. The Ocular Surface. (In press).
- Ninonuevo, M. R., Park, Y., Yin, H., Zhang, J., Ward, R. E., Clowers, B. H., German, J. B., Freeman, S. L., Killeen, K., Grimm, R. and Lebrilla, C. B. (2006) A strategy for annotating the human milk glycome. J. Agric. Food Chem. 54, 7471-7480. https://doi.org/10.1021/jf0615810
- Barile, D., Tao, N., Lebrilla, C. B., Coisson, J.-D., Arlorio, M. and German, J. B. (2009) Permeate from cheese whey ultrafiltration is a source of milk oligosaccharides. Int. Dairy J. 19, 524-530. https://doi.org/10.1016/j.idairyj.2009.03.008
- Tao, N., DePeters, E. J., Freeman, S., German, J. B., Grimm, R. and Lebrilla, C. B. (2008) Bovine milk glycome. J. Dairy Sci. 91, 3768-3778. https://doi.org/10.3168/jds.2008-1305
- LoCascio, R. G., Ninonuevo, M. R., Kronewitter, S. R., Freeman, S. L., German, J. B., Lebrilla, C. B. and Mills, D. A. (2009) A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides. Microb. Biotechnol. 2, 333-342. https://doi.org/10.1111/j.1751-7915.2008.00072.x
- de Leoz, M. L. A., Young, L. J. T., An, H. J., Kronewitter, S. R., Kim, J., Miyamoto, S., Borowsky, A. D., Chew, H. K. and Lebrilla, C. B. (2011) High-mannose glycans are elevated during breast cancer progression. Mol. Cell. Proteom. 10, 1-9.
- Kronewitter, S. R., de Leoz, M. L. A., Peacock, K. S., McBride, K. R., An, H. J., Miyamoto, S., Leiserowitz, G. S. and Lebrilla, C. B. (2010) Human serum processing and analysis methods for rapid and reproducible N-glycan mass profiling. J. Protoeme Res. 9, 4952-4959. https://doi.org/10.1021/pr100202a
- Barkauskas, D. A., An, H. J., Kronewitter, S. R., de Leoz, M. L., Chew, H. K., de Vere White, R. W., Leiserowitz, G. S., Miyamoto, S., Lebrilla, C. B. and Rocke, D. M. (2009) Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data. Bioinformatics 25, 251-257. https://doi.org/10.1093/bioinformatics/btn610
- Hua, S., An, H. J., Ozcan, S., Ro, G. S., Soares, S., DeVere-White, R. and Lebrilla, C. B. (2011) Comprehensive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers. Analyst 136, 3663-3671. https://doi.org/10.1039/c1an15093f
- Ruhaak, L. R., Miyamoto, S., Kelly, K. and Lebrilla, C. B. (2011) N-glycan profiling of dried blood spots. Anal. Chem. 84, 396-402.
- Wu, S., Tao, N., German, J. B., Grimm, R. and Lebrilla, C. B. (2010) Development of an annotated library of neutral human milk oligosaccharides. J. Protoeme Res. 9, 4138-4151. https://doi.org/10.1021/pr100362f
- Wu, S., Grimm, R., German, J. B. and Lebrilla, C. B. (2010) Annotation and structural analysis of sialylated human milk oligosaccharides. J. Protoeme Res. 10, 856-868.
- Aldredge, D., An, H. J., Tang, N., Waddell, K. and Lebrilla, C. B. (2012) Annotation of a serum n-glycan library for rapid identification of structures. J. Protoeme Res. 11, 1958-1968. https://doi.org/10.1021/pr2011439
- Hua, S., Nwosu, C., Strum, J., Seipert, R., An, H., Zivkovic, A., German, J. and Lebrilla, C. (2012) Site-specific protein glycosylation analysis with glycan isomer differentiation. Anal. Bioanal. Chem. 403, 1291-1302. https://doi.org/10.1007/s00216-011-5109-x
- Backstroom, M., Thomsson, K. A., Karlsson, H. and Hansson, G. C. (2008) Sensitive liquid chromatographyelectrospray mass spectrometry allows for the analysis of the o-glycosylation of immunoprecipitated proteins from cells or tissues: application to muc1 glycosylation in cancer. J. Protoeme Res. 8, 538-545.
- Bereman, M. S., Williams, T. I. and Muddiman, D. C. (2008) Development of a nanolc ltq orbitrap mass spectrometric method for profiling glycans derived from plasma from healthy, benign tumor control and epithelial ovarian cancer patients. Anal. Chem. 81, 1130-1136.
- Bones, J., Mittermayr, S., O'Donoghue, N., Guttman, A. S. and Rudd, P. M. (2010) Ultra performance liquid chromatographic profiling of serum n-glycans for fast and efficient identification of cancer associated alterations in glycosylation. Anal. Chem. 82, 10208-10215. https://doi.org/10.1021/ac102860w
- An, H. J., Miyamoto, S., Lancaster, K. S., Kirmiz, C., Li, B., Lam, K. S., Leiserowitz, G. S. and Lebrilla, C. B. (2006) Profiling of glycans in serum for the discovery of potential biomarkers for ovarian cancer. J. Protoeme Res. 5, 1626-1635. https://doi.org/10.1021/pr060010k
- Kirmiz, C., Li, B., An, H. J., Clowers, B. H., Chew, H. K., Lam, K. S., Ferrige, A., Alecio, R., Borowsky, A. D. and Sulaimon, S. (2007) A serum glycomics approach to breast cancer biomarkers. Mol. Cell. Proteom. 6, 43-55.
- Leiserowitz, G. S., Lebrilla, C., Miyamoto, S., An, H. J., Duong, H., Kirmiz, C., Li, B., Liu, H. and Lam, K. S. (2008) Glycomics analysis of serum: a potential new biomarker for ovarian cancer? Int. J. Gynecol. Cancer 18, 470-475. https://doi.org/10.1111/j.1525-1438.2007.01028.x
- de Leoz, M. L. A., An, H. J., Kronewitter, S., Kim, J., Beecroft, S., Vinall, R., Miyamoto, S., de Vere White, R., Lam, K. S. and Lebrilla, C. (2008) Glycomic approach for potential biomarkers on prostate cancer: Profiling of N-linked glycans in human sera and pRNS cell lines. Dis. Markers 25, 243-258. https://doi.org/10.1155/2008/515318
- Kyselova, Z., Mechref, Y., Al Bataineh, M. M., Dobrolecki, L. E., Hickey, R. J., Vinson, J., Sweeney, C. J. and Novotny, M. V. (2007) Alterations in the serum glycome due to metastatic prostate cancer. J. Protoeme Res. 6, 1822-1832. https://doi.org/10.1021/pr060664t
- Mann, B. F., Goetz, J. A., House, M. G., Schmidt, C. M. and Novotny, M. V. (2012) Glycomic and proteomic profiling of pancreatic cyst fluids identifies hyperfucosylated lactosamines on the N-linked glycans of overexpressed glycoproteins. Mol. Cell. Proteom. [Epub ahead of print].
- Alley, W. R., Vasseur, J. A., Goetz, J. A., Svoboda, M., Mann, B. F., Matei, D. E., Menning, N., Hussein, A., Mechref, Y. and Novotny, M. V. (2012) N-linked glycan structures and their expressions change in the blood sera of ovarian cancer patients. J. Protoeme Res. 11, 2282-2300. https://doi.org/10.1021/pr201070k
- Balog, C. I. A., Stavenhagen, K., Fung, W. L. J., Koeleman, C. A., McDonnell, L. M., Verhoeven, A., Mesker, W. E., Tollenaar, R. A. E. M., Deelder, A. M. and Wuhrer, M. (2012) N-glycosylation of colorectal cancer tissues: a liquid chromatography and mass spectrometry-based investigation. Mol. Cell. Proteom. [Epub ahead of print].
- Alley, W. R., Madera, M., Mechref, Y. and Novotny, M. V. (2010) Chip-based reversed-phase liquid chromatographymass spectrometry of permethylated n-linked glycans: a potential methodology for cancer-biomarker discovery. Anal. Chem. 82, 5095-5106. https://doi.org/10.1021/ac100131e
- Prater, B. D., Connelly, H. M., Qin, Q. and Cockrill, S. L. (2009) High-throughput immunoglobulin G N-glycan characterization using rapid resolution reverse-phase chromatography tandem mass spectrometry. Anal. Biochem. 385, 69-79. https://doi.org/10.1016/j.ab.2008.10.023
- Yu, S.-Y., Chang, L.-Y., Cheng, C.-W., Chou, C.-C., Fukuda, M. and Khoo, K.-H. (2012) Priming mass spectrometry- based sulfoglycomic mapping for identification of terminal sulfated lacdiNAc glycotope. Glycoconj. J. 1-12. [Epub ahead of print].
- Kronewitter, S. R., An, H. J., de Leoz, M. L., Lebrilla, C. B., Miyamoto, S. and Leiserowitz, G. S. (2009) The development of retrosynthetic glycan libraries to profile and classify the human serum N-linked glycome. Proteomics 9, 2986-2994. https://doi.org/10.1002/pmic.200800760
- Li, B., Russell, S. C., Zhang, J., Hedrick, J. L. and Lebrilla, C. B. (2011) Structure determination by MALDI-IRMPD mass spectrometry and exoglycosidase digestions o O-linked oligosaccharides from Xenopus borealis egg jelly. Glycobiology 21, 877-894. https://doi.org/10.1093/glycob/cwr003
- An, H. J. and Lebrilla, C. B. (2011) Structure elucidation of native N- and O-linked glycans by tandem mass spectrometry (tutorial). Mass Spectrom. Rev. 30, 560-578. https://doi.org/10.1002/mas.20283
- Lancaster, K. S., An, H. J., Li, B. and Lebrilla, C. B. (2006) Interrogation of N-linked oligosaccharides using infrared multiphoton dissociation in ft-icr mass spectrometry. Anal. Chem. 78, 4990-4997. https://doi.org/10.1021/ac0600656
- Ito, H., Takegawa, Y., Deguchi, K., Nagai, S., Nakagawa, H., Shinohara, Y. and Nishimura, S.-I. (2006) Direct structural assignment of neutral and sialylated N-glycans of glycopeptides using collision-induced dissociation MSn spectral matching. Rapid Commun. Mass Sp. 20, 3557-3565. https://doi.org/10.1002/rcm.2761
- Zhang, J., Schubothe, K., Li, B., Russell, S. and Lebrilla, C. B. (2004) Infrared multiphoton dissociation of O-linked mucin-type oligosaccharides. Anal. Chem. 77, 208-214.
- Zhao, J., Simeone, D. M., Heidt, D., Anderson, M. A. and Lubman, D. M. (2006) Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. J. Protoeme Res. 5, 1792-1802. https://doi.org/10.1021/pr060034r
- De Reggi, M., Capon, C., Gharib, B., Wieruszeski, J.-M., Michel, R. and Fournet, B. (1995) The glycan moiety of human pancreatic lithostathine. Eur. J. Biochem. 230, 503-510. https://doi.org/10.1111/j.1432-1033.1995.tb20589.x
- Hua, S., Lebrilla, C. and An, H. J. (2011) Application of nano-LC-based glycomics towards biomarker discovery. Bioanalysis 3, 2573-2585. https://doi.org/10.4155/bio.11.263
- Pabst, M., Bondili, J. S., Stadlmann, J., Mach, L. and Altmann, F. (2007) Mass + retention time = structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. Anal. Chem. 79, 5051-5057. https://doi.org/10.1021/ac070363i
- Campbell, M. P., Royle, L., Radcliffe, C. M., Dwek, R. A. and Rudd, P. M. (2008) GlycoBase and autoGU: tools for HPLC-based glycan analysis. Bioinformatics 24, 1214-1216. https://doi.org/10.1093/bioinformatics/btn090
- Kreunin, P., Zhao, J., Rosser, C., Urquidi, V., Lubman, D. M. and Goodison, S. (2007) Bladder cancer associated glycoprotein signatures revealed by urinary proteomic profiling. J. Protoeme Res. 6, 2631-2639. https://doi.org/10.1021/pr0700807
- Qiu, Y., Patwa, T. H., Xu, L., Shedden, K., Misek, D. E., Tuck, M., Jin, G., Ruffin, M. T., Turgeon, D. K., Synal, S., Bresalier, R., Marcon, N., Brenner, D. E. and Lubman, D. M. (2008) Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot. J. Protoeme Res. 7, 1693-1703. https://doi.org/10.1021/pr700706s
- Ahn, Y., Shin, P., Ji, E., Kim, H. and Yoo, J. (2012) A lectin- coupled, multiple reaction monitoring based quantitative analysis of human plasma glycoproteins by mass spectrometry. Anal. Bioanal. Chem. 402, 2101-2112. https://doi.org/10.1007/s00216-011-5646-3
- Miyoshi, E. and Nakano, M. (2008) Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures. Proteomics 8, 3257-3262. https://doi.org/10.1002/pmic.200800046
- Kurogochi, M., Amano, M., Fumoto, M., Takimoto, A., Kondo, H. and Nishimura, S.-I. (2007) Reverse glycoblotting allows rapid-enrichment glycoproteomics of biopharmaceuticals and disease-related biomarkers. Angew. Chem. Int. Ed. 46, 8808-8813. https://doi.org/10.1002/anie.200702919
- Zeng, X., Hood, B. L., Sun, M., Conrads, T. P., Day, R. S., Weissfeld, J. L., Siegfried, J. M. and Bigbee, W. L. (2010) Lung cancer serum biomarker discovery using glycoprotein capture and liquid chromatography mass spectrometry. J. Protoeme Res. 9, 6440-6449. https://doi.org/10.1021/pr100696n
- Zhang, H., Yi, E. C., Li, X.-J., Mallick, P., Kelly-Spratt, K. S., Masselon, C. D., Camp, D. G., Smith, R. D., Kemp, C. J. and Aebersold, R. (2005) High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol. Cell. Proteom. 4, 144-155. https://doi.org/10.1074/mcp.M400090-MCP200
- Zhang, H., Li, X.-J., Martin, D. B. and Aebersold, R. (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotech. 21, 660-666. https://doi.org/10.1038/nbt827
- Zhou, Y., Aebersold, R. and Zhang, H. (2007) Isolation of N-linked glycopeptides from plasma. Anal. Chem. 79, 5826-5837. https://doi.org/10.1021/ac0623181
- Tsai, H.-Y., Boonyapranai, K., Sriyam, S., Yu, C.-J., Wu, S.-W., Khoo, K.-H., Phutrakul, S. and Chen, S.-T. (2011) Glycoproteomics analysis to identify a glycoform on haptoglobin associated with lung cancer. Proteomics 11, 2162-2170. https://doi.org/10.1002/pmic.201000319
- Dallas, D. C., Martin, W. F., Strum, J. S., Zivkovic, A. M., Smilowitz, J. T., Underwood, M. A., Affolter, M., Lebrilla, C. B. and German, J. B. (2011) N-linked glycan profiling of mature human milk by high-performance microfluidic chip liquid chromatography time-of-flight tandem mass spectrometry. J. Agric. Food Chem. 59, 4255-4263. https://doi.org/10.1021/jf104681p
- Alley, W. R., Mechref, Y. and Novotny, M. V. (2009) Use of activated graphitized carbon chips for liquid chromatography/ mass spectrometric and tandem mass spectrometric analysis of tryptic glycopeptides. Rapid Commun. Mass Sp. 23, 495-505. https://doi.org/10.1002/rcm.3899
- White, K. Y., Rodemich, L., Nyalwidhe, J. O., Comunale, M. A., Clements, M. A., Lance, R. S., Schellhammer, P. F., Mehta, A. S., Semmes, O. J. and Drake, R. R. (2009) Glycomic characterization of prostate-specific antigen and prostatic acid phosphatase in prostate cancer and benign disease seminal plasma fluids. J. Protoeme Res. 8, 620-630. https://doi.org/10.1021/pr8007545
- Kuo, C.-W., Wu, I. L., Hsiao, H.-H. and Khoo, K.-H. (2012) Rapid glycopeptide enrichment and N-glycosylation site mapping strategies based on amine-functionalized magnetic nanoparticles. Anal. Bioanal. Chem. 402, 2765-2776. https://doi.org/10.1007/s00216-012-5724-1
- Gray, J. S. S., Yang, B. Y. and Montgomery, R. (1998) Heterogeneity of glycans at each N-glycosylation site of horseradish peroxidase. Carbohydr. Res. 311, 61-69. https://doi.org/10.1016/S0008-6215(98)00209-2
- Nakano, M., Nakagawa, T., Ito, T., Kitada, T., Hijioka, T., Kasahara, A., Tajiri, M., Wada, Y., Taniguchi, N. and Miyoshi, E. (2008) Site-specific analysis of N-glycans on haptoglobin in sera of patients with pancreatic cancer: A novel approach for the development of tumor markers. Int. J. Cancer 122, 2301-2309. https://doi.org/10.1002/ijc.23364
- Wu, Z. L., Ethen, C., Hickey, G. E. and Jiang, W. (2009) Active 1918 pandemic flu viral neuraminidase has distinct N-glycan profile and is resistant to trypsin digestion. Biochem. Biophys. Res. Commun. 379, 749-753. https://doi.org/10.1016/j.bbrc.2008.12.139
- Fujihara, J., Yasuda, T., Kunito, T., Fujii, Y., Takatsuka, H., Moritani, T. and Takeshita, H. (2008) Two N-linked glycosylation sites (Asn18 and Asn106) are both required for full enzymatic activity, thermal stability and resistance to proteolysis in mammalian deoxyribonuclease i. Biosci. Biote chnol. Biochem. 72, 3197-3205. https://doi.org/10.1271/bbb.80376
- Pompach, P., Chandler, K. B., Lan, R., Edwards, N. and Goldman, R. (2012) Semi-automated identification of n-glycopeptides by hydrophilic interaction chromatography, nano-reverse-phase lc-ms/ms and glycan database search. J. Protoeme Res. 11, 1728-1740. https://doi.org/10.1021/pr201183w
- Tajiri, M., Ohyama, C. and Wada, Y. (2008) Oligosaccharide profiles of the prostate specific antigen in free and complexed forms from the prostate cancer patient serum and in seminal plasma: a glycopeptide approach. Glycobiology 18, 2-8. https://doi.org/10.1093/glycob/cwm117
- Tajiri, M., Yoshida, S. and Wada, Y. (2005) Differential analysis of site-specific glycans on plasma and cellular fibronectins: application of a hydrophilic affinity method for glycopeptide enrichment, Glycobiology 15, 1332-1340. https://doi.org/10.1093/glycob/cwj019
- Neue, K., Mormann, M., Peter-Katalinić, J. and Pohlentz, G. (2011) Elucidation of glycoprotein structures by unspecific proteolysis and direct nanoESI mass spectrometric analysis of ZIC-HILIC-enriched glycopeptides. J. Protoeme Res. 10, 2248-2260. https://doi.org/10.1021/pr101082c
- Larsen, M. R., Højrup, P. and Roepstorff, P. (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol. Cell. Proteom. 4, 107-119. https://doi.org/10.1074/mcp.M400068-MCP200
- Xin, L., Zhang, H., Liu, H. and Li, Z. (2012) Equal ratio of graphite carbon to activated charcoal for enrichment of N-glycopeptides prior to matrix-assisted laser desorption/ ionization time-of-flight mass spectrometric identification. Rapid Commun. Mass Sp. 26, 269-274. https://doi.org/10.1002/rcm.5327
- Thaysen-Andersen, M., Mysling, S. and Højrup, P. (2009) Site-specific glycoprofiling of N-Linked glycopeptides using MALDI-TOF MS: strong correlation between signal strength and glycoform quantities. Anal. Chem. 81, 3933-3943. https://doi.org/10.1021/ac900231w
- Zauner, G., Koeleman, C. A. M., Deelder, A. M. and Wuhrer, M. (2010) Protein glycosylation analysis by HILIC-LC-MS of Proteinase K-generated N- and O-glycopeptides. J. Sep. Sci. 33, 903-910. https://doi.org/10.1002/jssc.200900850
- Yu, Y. Q., Fournier, J., Gilar, M. and Gebler, J. C. (2007) Identification of N-linked glycosylation sites using glycoprotein digestion with pronase prior to MALDI tandem time-of-flight mass spectrometry. Anal. Chem. 79, 1731- 1738. https://doi.org/10.1021/ac0616052
- An, H. J., Froehlich, J. W. and Lebrilla, C. B. (2009) Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Curr. Opin. Chem. Biol. 13, 421-426. https://doi.org/10.1016/j.cbpa.2009.07.022
- An, H. J., Peavy, T. R., Hedrick, J. L. and Lebrilla, C. B. (2003) Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Anal. Chem. 75, 5628-5637. https://doi.org/10.1021/ac034414x
- Li, H., Li, B., Song, H., Breydo, L., Baskakov, I. V. and Wang, L.-X. (2005) Chemoenzymatic synthesis of HIV-1 V3 glycopeptides carrying two N-glycans and effects of glycosylation on the peptide domain. J. Org. Chem. 70, 9990-9996. https://doi.org/10.1021/jo051729z
- Liu, X., McNally, D. J., Nothaft, H., Szymanski, C. M., Brisson, J.-R. and Li, J. (2006) Mass spectrometry-based glycomics strategy for exploring N-linked glycosylation in eukaryotes and bacteria, Anal. Chem. 78, 6081-6087. https://doi.org/10.1021/ac060516m
- Dodds, E. D., Seipert, R. R., Clowers, B. H., German, J. B. and Lebrilla, C. B. (2008) Analytical performance of immobilized pronase for glycopeptide footprinting and implications for surpassing reductionist glycoproteomics. J. Protoeme Res. 8, 502-512.
- Clowers, B. H., Dodds, E. D., Seipert, R. R. and Lebrilla, C. B. (2007) Site determination of protein glycosylation based on digestion with immobilized nonspecific proteases and fourier transform ion cyclotron resonance mass spectrometry. J. Protoeme Res. 6, 4032-4040. https://doi.org/10.1021/pr070317z
- An, H. J., Tillinghast, J. S., Woodruff, D. L., Rocke, D. M. and Lebrilla, C. B. (2006) A new computer program (GlycoX) to determine simultaneously the glycosylation sites and oligosaccharide heterogeneity of glycoproteins. J. Protoeme Res. 5, 2800-2808. https://doi.org/10.1021/pr0602949
- Seipert, R. R., Dodds, E. D., Clowers, B. H., Beecroft, S. M., German, J. B. and Lebrilla, C. B. (2008) Factors that influence fragmentation behavior of N-linked glycopeptide ions. Anal. Chem. 80, 3684-3692. https://doi.org/10.1021/ac800067y
- Seipert, R. R., Dodds, E. D. and Lebrilla, C. B. (2008) Exploiting differential dissociation chemistries of o-linked glycopeptide ions for the localization of mucin-type protein glycosylation. J. Protoeme Res. 8, 493-501.
- Wuhrer, M., Koeleman, C. A. M., Hokke, C. H. and Deelder, A. M. (2004) Protein glycosylation analyzed by normal-phase nano-liquid chromatography-mass spectrometry of glycopeptides. Anal. Chem. 77, 886-894.
- Temporini, C., Perani, E., Calleri, E., Dolcini, L., Lubda, D., Caccialanza, G. and Massolini, G. (2006) Pronase-immobilized enzyme reactor: an approach for automation in glycoprotein analysis by LC/LC-ESI/MSn. Anal. Chem. 79, 355-363.
- Tang, Z., Varghese, R. S., Bekesova, S., Loffredo, C. A., Hamid, M. A., Kyselova, Z., Mechref, Y., Novotny, M. V., Goldman, R. and Ressom, H. W. (2009) Identification of N-glycan serum markers associated with hepatocellular carcinoma from mass spectrometry data. J. Protoeme Res. 9, 104-112.
- Froehlich, J. W., Barboza, M., Chu, C., Lerno, L. A., Clowers, B. H., Zivkovic, A. M., German, J. B. and Lebrilla, C. B. (2011) Nano-LC-MS/MS of glycopeptides produced by nonspecific proteolysis enables rapid and extensive site-specific glycosylation determination. Anal. Chem. 83, 5541-5547. https://doi.org/10.1021/ac2003888
- Thaysen-Andersen, M., Thogersen, I. B., Lademann, U., Offenberg, H., Giessing, A. M. B., Enghild, J. J., Nielsen, H. J., Brunner, N. and Hojrup, P. (2008) Investigating the biomarker potential of glycoproteins using comparative glycoprofiling-application to tissue inhibitor of metalloproteinases- 1, Biochimica et Biophysica Acta (BBA) - Proteins &. Proteomics 1784, 455-463.
Cited by
- Glyco-Analytical Multispecific Proteolysis (Glyco-AMP): A Simple Method for Detailed and Quantitative Glycoproteomic Characterization vol.12, pp.10, 2013, https://doi.org/10.1021/pr400442y
- Antibody approaches to prepare clinically transplantable cells from human embryonic stem cells: Identification of human embryonic stem cell surface markers by monoclonal antibodies vol.9, pp.7, 2014, https://doi.org/10.1002/biot.201300495
- Glycocapture-based proteomics for secretome analysis vol.13, pp.3-4, 2013, https://doi.org/10.1002/pmic.201200414
- Carbohydrate restriction in the larval diet causes oxidative stress in adult insects of Drosophila melanogaster vol.85, pp.6, 2013, https://doi.org/10.15407/ubj85.05.061
- Analytical platform for glycomic characterization of recombinant erythropoietin biotherapeutics and biosimilars by MS vol.5, pp.5, 2013, https://doi.org/10.4155/bio.12.327
- Glycoproteomic analysis identifies human glycoproteins secreted from HIV latently infected T cells and reveals their presence in HIV+ plasma vol.11, pp.1, 2014, https://doi.org/10.1186/1559-0275-11-9
- Technologies for glycomic characterization of biopharmaceutical erythropoietins vol.68, 2015, https://doi.org/10.1016/j.trac.2015.02.004
- Open tubular capillary electrochromatography with anN-phenylacrylamide-styrene copolymer-based stationary phase for the separation of anomers of glucose and structural isomers of maltotriose vol.38, pp.10, 2015, https://doi.org/10.1002/jssc.201401356
- Validation of N-glycan markers that improve the performance of CA19-9 in pancreatic cancer vol.17, pp.1, 2017, https://doi.org/10.1007/s10238-015-0401-2
- Measurement of Glycosylated Alpha-Fetoprotein Improves Diagnostic Power over the Native Form in Hepatocellular Carcinoma vol.9, pp.10, 2014, https://doi.org/10.1371/journal.pone.0110366
- Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012 vol.36, pp.3, 2017, https://doi.org/10.1002/mas.21471
- Isomer-Specific LC/MS and LC/MS/MS Profiling of the Mouse Serum N-Glycome Revealing a Number of Novel Sialylated N-Glycans vol.85, pp.9, 2013, https://doi.org/10.1021/ac400195h
- Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans vol.501, 2016, https://doi.org/10.1016/j.ab.2016.02.004
- Automated Assignments of N- and O-Site Specific Glycosylation with Extensive Glycan Heterogeneity of Glycoprotein Mixtures vol.85, pp.12, 2013, https://doi.org/10.1021/ac4006556
- The sweet and sour of serological glycoprotein tumor biomarker quantification vol.11, pp.1, 2013, https://doi.org/10.1186/1741-7015-11-31
- Glycomic profiling of targeted serum haptoglobin for gastric cancer using nano LC/MS and LC/MS/MS vol.12, pp.12, 2016, https://doi.org/10.1039/C6MB00559D
- Systems Glycobiology: Integrating Glycogenomics, Glycoproteomics, Glycomics, and Other ‘Omics Data Sets to Characterize Cellular Glycosylation Processes vol.428, pp.16, 2016, https://doi.org/10.1016/j.jmb.2016.07.005
- Isomer-specific chromatographic profiling yields highly sensitive and specific potential N-glycan biomarkers for epithelial ovarian cancer vol.1279, 2013, https://doi.org/10.1016/j.chroma.2012.12.079
- Designation of fingerprint glycopeptides for targeted glycoproteomic analysis of serum haptoglobin: insights into gastric cancer biomarker discovery vol.410, pp.6, 2018, https://doi.org/10.1007/s00216-017-0811-y
- Do fragments and glycosylated isoforms of alpha-1-antitrypsin in CSF mirror spinal pathophysiological mechanisms in chronic peripheral neuropathic pain? An exploratory, discovery phase study vol.18, pp.1, 2018, https://doi.org/10.1186/s12883-018-1116-2