참고문헌
- H. Ahn, J. Byun and J.-D. Park, Automorphisms of the Hartogs type domains over classical Symmetric domains, Internat. J. of Math. Accepted DOI No: 10.1142/S0129167X1250098X.
- S. Bell and E. Ligocka A Simplification ann Extension of Fefferman's Theorem on Biholomorphic Mappings, Invent. Math. 57 (1980), 283-289. https://doi.org/10.1007/BF01418930
- J. Byun and H.R. Cho Explicit description for the automorphism group of the Fornss domain, J. Math. Anal. Appl. 369(2010) 10-14. https://doi.org/10.1016/j.jmaa.2010.02.005
- J.E. Fornaess Peak Points on weakly pseudoconvex domains, Math. Ann. 227(1977), 173-175. https://doi.org/10.1007/BF01350193
- H. Gaussier and A. Sukhov Estimates of the Kobayashi metric on almost complex manifolds, Bull. Soc. Math. France 133(2005), 259-273. https://doi.org/10.24033/bsmf.2486
- H. Gaussier and A. Sukhov On the geometry of model almost complex manifolds with boundary, Math. Z. 254(2006), 567-589. https://doi.org/10.1007/s00209-006-0959-1
- J. Han and D. Zhao Explicit Description for the Automorphism Group of the General Kohn-Nirenberg Domain, Int. J. Math. Anal. 5(2011) 569-574.
- R.E. Greene, K.-T. Kim, and S.G. Krantz, The Geometry of Complex Domains, Progress in Mathematics(Birkhauser) 291(2011).
- K.-T. Kim and S.G. Krantz The Automorphism Groups of Domains, Amer. Math. Monthly 112 (2005), 585-601. https://doi.org/10.2307/30037544
- J.J. Kohn and L. Nirenberg A pseudo-convex domain not admitting a holomorphic support function, Math. Ann. 201(1973), 265-268. https://doi.org/10.1007/BF01428194
- B. Kruglikov Deformation of big pseudoholomorphic disks and application to the Hanh pseudonorm. [Deformation of big pseudoholomorphic disks and application to the Hahn pseudonorm], C. R. Math. Acad. Sci. Paris 338 (2004), 295-299. https://doi.org/10.1016/j.crma.2003.12.010
- K.H. Lee, Almost complex manifolds and Cartan's uniqueness theorem, Trans. Amer. Math. Soc. 358 (2006), 2057-2069. https://doi.org/10.1090/S0002-9947-05-03973-5
- K.-H. Lee Domains in almost complex manifolds with an automorphism orbit accumulating at a strongly pseudoconvex boundary point, Michigan Math. J. 54(2006), 179-206. https://doi.org/10.1307/mmj/1144437443