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TECHNIQUES FOR COMPUTATIONS OF THE

AUTOMORPHISM GROUP OF DOMAIN

Jisoo Byun

Abstract. In this paper, we introduce techniques for computations of

the automorphism group of special doamins, for example the Kohn-Nirenberg

domain, Fornaess domain and Cartan Hartogs domain.

1. Introduction

Let D be the domain in the complex euclidean space Cn. The automor-
phism group Aut(D) be the set of all injective holomorphic maps from D onto
itself. This group is a topological group under usual fucntion composition
and compact-open topology. H. Cartan show that Aut(D) is a real Lie group
whenever the domain D is bounded.

From the viewpoint of geometry, transitive automorphism group is one of
main stream of complex differential geometry. Also, the classfication problem
for domains with noncompact automorphism group is deep histrory. For more
detailed information, see the book written by R. Greene, K.-T. Kim and S.
Krantz([9]). In this paper, we focus on the computations of automorphism
group of special domain in Cn. In general, we cannot compute the auto-
morphism group of given domain D. In case of domains with noncompact
automorphism group, the computation is easier than domain with compact au-
tomorphism group. We introduce known techniques for in Section 2. In Section
2, we deal with domain with noncompact automorphism group. In Section 3,
we introduce techniques for domains with compact autormophism group, es-
pecially unbounded domains. In Section 4, we introduce new invariants to
determine holomorphic equivalence of strongly pseudoconvex domains.

2. Domains with Noncompact Automorphism Group

First, we introduce Cartan Uniqueness Theorem.
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Theorem 2.1 (H. Cartan). Let D be a bounded domain in Cn containing the
origin o. If f is homorphich map with f(o) = o and dfo = Id, then f is equal
to the identity map.

Lee proved that Cartan Uniqueness Theorem for domain in the almost com-
plex manifold in [12]. Next, we will introduce Linearization Theorem.

Definition 1. Let D be a domain in Cn. We say that D is circular if D is
invariant under the circular action

(z1, z2, . . . , zn) 7→ (eiθz1, e
iθz2, . . . , e

iθzn)

for all θ ∈ R.

Theorem 2.2. Let D be a bounded circular domain in Cn containing the origin
o. If f ∈ Aut(D) and f(o) = o, then f is linear.

Proof. Let Rθ(z1, z2, . . . , zn) = (eiθz1, e
iθz2, . . . , e

iθzn). The automorphism

F := f−1 ◦R−θ ◦ f ◦Rθ

is the automorphism preserving the orgin o. Moreover, the differential at the
origin dFo is the identity matrix. By Cartan Uniqueness Theorem, F is equal
to the identity map. That means

f(eiθz1, e
iθz2, . . . , e

iθzn) = eiθf(z1, z2, . . . , zn)

is satisfied for all θ. This implies the conclusion. �

Using this theorem, we can compute the automorphism group of unit ball
and Thullen domain

Em =
{

(z, w) ∈ C2 | |z|2 + |w|2m < 1
}
.

Let f be an automorphism group of the unit ball B := E1 in C2. The point
f(0, 0) ∈ B is denoted by (α, β). We know the Möbius tranformation

Ma(z, w) =

(
z − a
1− az

,

√
1− |a|2
1− az

w

)
is the automorphism of the unit ball B for |a| < 1. Let f1 = Mα ◦ f . Then

f1 is the automorphism with f1(0, 0) = Mα(α, β) =

(
0, β√

1−|α|2

)
. Clearly,

the reflection map R(z, w) = (w, z) is the automrophism of the unit ball. We
consider F := M β√

1−|a|2
◦R◦f1. The map F is the automorphism with F (0, 0) =

(0, 0). By the Cartan Linearization Theorem, we obtain that F is linear map.
The linear map F preseve the unit ball. So, we conclude that F is an unitary
map. Hence every automorphism f is equal to composition of the Möbius
tranform and unitary maps.
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Remark 1. Note that we already know that the automorphism group of the unit
ball is transitive. The unitary map and Möbius transformationation move the
origin to any point in the unit ball. Key idea of the above computation is based
on this fact. Given automorphism f ∈ Aut(B) and the point f(0, 0) = (α, β),
apply the Mobius transformation and unitary map to (α, β) such that this point
is moved to the origin. But the Thullen domain is not transitive. How to find
all automorphisms of the Thullen domain Em.

We know that the Möbius transformation

Ma(z, w) =

(
z − a
1− az

,
2m
√

1− |a|2
m
√

1− az
w

)
for |a| < 1 is the automorphism of Thullen domain Em. The automorphism
f ∈ Aut(Em) preseving the origin is only rotation with respcet to each coor-
dinates. More precisely, maps (z, w) 7→ (eiθz, eiηw) are the automorphism of
Em. We want to prove that every automorphism f ∈ Aut(Em) is equal to the
composition of the above Möbius transformation and rotations.

To achieve this goal, we consider the orbit of the origin. The Möbius trans-
formation move the orgin to the set {(z, 0) | |z| < 1}. Also, the rotation has
the same phenomenon. We should first show that every automorphism pre-
seves the disc {(z, 0) | |z| < 1}. For this, we introduce remarkable result for
extension theorem in [2]

Theorem 2.3 (Bell and Ligocka). If D1 and D2 satisfy Bell’s codition (R),
then any biholomorphic mapping between D1 and D2 smoothly to the boundary.

The Bell’s condition (R) is explained in [2].
Note that all point in {(z, 0) | |z| = 1} are not strongly pseudoconvex bound-

ary points. Equivalently, the D’Angelo type of these points is greater than
2. All boundary points of Em except {(z, 0) | |z| = 1} are strongly pseudo-
convex point. Hence every automrophism f ∈ Aut(Em) preserves the disc
{(z, 0) | |z| < 1} by maximum principle.

Therefore, if f ∈ Aut(Em), by the above observation, then f(0, 0) = (α, 0).
Define F := Mα ◦ f . Then F ∈ Aut(Em) and F (0, 0) = (0, 0). By Cartan Lin-
earization Theorem, F is linear preserving Em. Hence F (z, w) = (eiθz, eiηw)
for some θ, η ∈ R.

As a natural generalization of Thullen domains, the Hartogs type domain

Ω̂m is defined by

Ω̂m = { (z, ζ) ∈ Ω× Cm : ρ(z, ζ) := ‖ζ‖2µ −NΩ(z, z) < 0 }, (1)

where Ω is an irreducible bounded classical symmetric domain in complex vec-

tor space and NΩ(z, w) denotes the generic norm of Ω. We will call Ω̂m the
Hartogs domain over a bounded classical symmetric domain Ω. The compu-

tation of Aut(Ω̂m) is based on the similar idea. But the difficulty comes from
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facts that Ω̂m has singular boundary. There is no result about smooth ex-
tension of biholomorphic maps. They proved that all boundary points except
bΩ×{0} are strongly pseudoconvex in [1]. Using this fact, they prove that ev-
ery automorphism preserves Ω×{0}. Therefore, the same technique is working
for Hartogs type domains.

3. Domains with compact automorhism group

There are several bounded examples with compact automorphism group.
Let k,m be positive integers greater than 1. Then domain

Ek,m =
{

(z, w) ∈ C2 | |z|2k + |w|2m < 1
}

has real-analytic boundary and is a bounded domain with compact autor-
mophism group. More precisely, it has only rotation to each coordinate. For
detailed information, see [9]. This example is good because it is bounded do-
main with real-analytic boundary. So we can apply good results to this domain,
for example, Bell-Ligocka Theorem and so on.

The Kohn-Nirenberg domain([10]) and Fornæss domain ([4]) are not bounded
domain with real-analytic boundary. The Kohn-Nirenberg domain ΩKN is de-
fined by the following inequality :

Rew + |zw|2 + |z|8 +
15

7
|z|2Re z6 < 0.

The Fornæss domain Ωt is also defined by the following inequality :

Rew + |zw|2 + |z|6 + t|z|2Re z4 < 0

for 1 < |t| < 9
5 . The computation of these domain is already known in [3].

Aut(ΩKN ) is generated by map (z, w) 7→ (ei
π
3 z, w). Hence the automorphism

group of the Kohn-Nirenberg domain is a cyclic group of order 6. Similarily,
Aut(Ω)t is generated by the map (z, w) 7→ (ei

π
2 z, w).

Recently, J. Han and Zhao ([7]) introduce the domain Ωk defined by

Rew + |zw|2 + |z|2n + k1|z|2n−2mRe z2m + k2|z|2n−2mIm z2m < 0.

They also show that Aut(Ωk) is is a cyclic group of odre 2m.
The above three example has similar structure in C2. These domain have an

automorphism as rotation of z-axis and contain left half plane {(0, w) | Rew < 0}.
The origin is the only weakly pseudoconvex boundary point of these domain.
The half of proof is devoted to automorphism f preserving the origin. Since the
origin lies in the boundary, the Cartan Uniqueness Theorem is useless for this
case. The other half is devoted to automorphism f with f(O) =∞ (following
notation in [3]). Exactly, they proved that there are no such automorphisms. If
exists, by the existence of rotational symmetry at the origin, there exists rota-
tional symmetry at the infinite. This is impossible by using algebraic technique
and rotational angle.
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4. Diffeomorphic deformations of the structure

Let Ω and Ω′ are bounded strongly pseudoconvex domains in Cn. We define
the following invariant :

dΩ(Ω′) := inf
f∈F
‖f∗Jst − Jst‖C2(Ω̄) ,

where F = {f : Ω −→ Ω′ | C2 diffeomorphism} and Jst is the standard
complex structure for Cn.

Remark 2. (i) Since all the structures under consideration are smooth of class
C∞ then every element in F is a smooth C∞ diffeomorphism from Ω to Ω′.

(ii) The number dΩ(Ω′) is invariant under the action of biholomorphisms.
More precisely, if Ω1 (resp. Ω′1) is biholomorphic to Ω (resp. Ω′), then
dΩ1

(Ω′1) = dΩ(Ω′).

Theorem 4.1. Let Ω and Ω′ are bounded strongly pseudoconvex domains in
Cn. Then dΩ(Ω′) = 0 if and only if there is a biholomorphism from Ω to Ω′.

Proof. Let f be a biholomorphism from Ω to Ω′. Then f can be extended to a

smooth C∞ diffeomorphism between Ω and Ω
′

(see Remark 2, (i)). Therefore,
dΩ(Ω′) = 0.

Conversely, assume that dΩ(Ω′) = 0. Then there is a sequence {fn} of
C∞ diffeomorphisms (in view of Remark 2) from Ω̄ to Ω̄′ such that ‖f∗nJst −
Jst‖C2(Ω̄) → 0 as n goes to infinity. Let gn := f−1

n and Jn := f∗nJst.

Case 1. There is a point q′ in Ω′ such that the sequence {gn(q′)} converges to
a point in ∂Ω. It follows from [6, 13] that there exists a linear almost complex
structure J0 on R2n such that Ω′ is (Jst, J0) biholomorphic to the Siegel half
space H := {(x, y) ∈ R2n : x1 +

∑n
j=2(x2

j + y2
j ) < 0}. The automorphism

group Aut(H, J0) being transitive by [13], the domain Ω′ is a homogeneous
domain. Hence the domain Ω is homogeneous for every almost complex Jn. In
particular, picking a point q in Ω, there is an automorphism αn of (Ω, Jn) such
that (αn ◦ gn)(q′) = q. Note that α∗nJn = Jn.

Since (Jn)n converges to Jst and Ω is strictly pseudoconvex, by the result
of [11], it follows from that the sequence (βn := αn ◦ gn)n converges to a
holomorphic map G from Ω′ to Ω. Moreover, for every n, β−1

n is a (Jn, Jst)
biholomorphism from Ω to Ω′ and satisfies β−1

n (q) = q′. Then (βn)n converges
to a holomorphic map F from Ω to Ω′. It is easy to prove that G = F−1.

Case 2. For every point q′ in Ω′ the sequence (gn(q′))n is relatively compact
in Ω. It follows from that (gn)n converges to a holomorphic map from Ω′ to Ω.
If dJΩ denotes the Kobayashi-Royden integrated distance, it follows from that :

∀p ∈ Ω, ∃ cp > 0 : dJnΩ (gn(q′), p) ≤ cp,

for sufficiently large n. Hence dJstΩ′ (q′, fn(p)) ≤ cp for sufficiently large n. Since
Ω′ is strongly pseudoconvex, the sequence (fn(p))n is relatively compact in Ω′

according to [5]. We can now conclude by [11]. �
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