Browse > Article
http://dx.doi.org/10.7858/eamj.2012.28.3.347

TECHNIQUES FOR COMPUTATIONS OF THE AUTOMORPHISM GROUP OF DOMAIN  

Byun, Ji-Soo (Mathematics Education Department KyungNam University)
Publication Information
Abstract
In this paper, we introduce techniques for computations of the automorphism group of special doamins, for example the Kohn-Nirenberg domain, Fornaess domain and Cartan Hartogs domain.
Keywords
Automorphism Group; Kohn-Nirenberg domain;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Han and D. Zhao Explicit Description for the Automorphism Group of the General Kohn-Nirenberg Domain, Int. J. Math. Anal. 5(2011) 569-574.
2 R.E. Greene, K.-T. Kim, and S.G. Krantz, The Geometry of Complex Domains, Progress in Mathematics(Birkhauser) 291(2011).
3 K.-T. Kim and S.G. Krantz The Automorphism Groups of Domains, Amer. Math. Monthly 112 (2005), 585-601.   DOI   ScienceOn
4 J.J. Kohn and L. Nirenberg A pseudo-convex domain not admitting a holomorphic support function, Math. Ann. 201(1973), 265-268.   DOI
5 B. Kruglikov Deformation of big pseudoholomorphic disks and application to the Hanh pseudonorm. [Deformation of big pseudoholomorphic disks and application to the Hahn pseudonorm], C. R. Math. Acad. Sci. Paris 338 (2004), 295-299.   DOI   ScienceOn
6 K.H. Lee, Almost complex manifolds and Cartan's uniqueness theorem, Trans. Amer. Math. Soc. 358 (2006), 2057-2069.   DOI   ScienceOn
7 K.-H. Lee Domains in almost complex manifolds with an automorphism orbit accumulating at a strongly pseudoconvex boundary point, Michigan Math. J. 54(2006), 179-206.   DOI
8 H. Ahn, J. Byun and J.-D. Park, Automorphisms of the Hartogs type domains over classical Symmetric domains, Internat. J. of Math. Accepted DOI No: 10.1142/S0129167X1250098X.
9 J. Byun and H.R. Cho Explicit description for the automorphism group of the Fornss domain, J. Math. Anal. Appl. 369(2010) 10-14.   DOI   ScienceOn
10 S. Bell and E. Ligocka A Simplification ann Extension of Fefferman's Theorem on Biholomorphic Mappings, Invent. Math. 57 (1980), 283-289.   DOI
11 J.E. Fornaess Peak Points on weakly pseudoconvex domains, Math. Ann. 227(1977), 173-175.   DOI
12 H. Gaussier and A. Sukhov Estimates of the Kobayashi metric on almost complex manifolds, Bull. Soc. Math. France 133(2005), 259-273.   DOI
13 H. Gaussier and A. Sukhov On the geometry of model almost complex manifolds with boundary, Math. Z. 254(2006), 567-589.   DOI