1 |
J. Han and D. Zhao Explicit Description for the Automorphism Group of the General Kohn-Nirenberg Domain, Int. J. Math. Anal. 5(2011) 569-574.
|
2 |
R.E. Greene, K.-T. Kim, and S.G. Krantz, The Geometry of Complex Domains, Progress in Mathematics(Birkhauser) 291(2011).
|
3 |
K.-T. Kim and S.G. Krantz The Automorphism Groups of Domains, Amer. Math. Monthly 112 (2005), 585-601.
DOI
ScienceOn
|
4 |
J.J. Kohn and L. Nirenberg A pseudo-convex domain not admitting a holomorphic support function, Math. Ann. 201(1973), 265-268.
DOI
|
5 |
B. Kruglikov Deformation of big pseudoholomorphic disks and application to the Hanh pseudonorm. [Deformation of big pseudoholomorphic disks and application to the Hahn pseudonorm], C. R. Math. Acad. Sci. Paris 338 (2004), 295-299.
DOI
ScienceOn
|
6 |
K.H. Lee, Almost complex manifolds and Cartan's uniqueness theorem, Trans. Amer. Math. Soc. 358 (2006), 2057-2069.
DOI
ScienceOn
|
7 |
K.-H. Lee Domains in almost complex manifolds with an automorphism orbit accumulating at a strongly pseudoconvex boundary point, Michigan Math. J. 54(2006), 179-206.
DOI
|
8 |
H. Ahn, J. Byun and J.-D. Park, Automorphisms of the Hartogs type domains over classical Symmetric domains, Internat. J. of Math. Accepted DOI No: 10.1142/S0129167X1250098X.
|
9 |
J. Byun and H.R. Cho Explicit description for the automorphism group of the Fornss domain, J. Math. Anal. Appl. 369(2010) 10-14.
DOI
ScienceOn
|
10 |
S. Bell and E. Ligocka A Simplification ann Extension of Fefferman's Theorem on Biholomorphic Mappings, Invent. Math. 57 (1980), 283-289.
DOI
|
11 |
J.E. Fornaess Peak Points on weakly pseudoconvex domains, Math. Ann. 227(1977), 173-175.
DOI
|
12 |
H. Gaussier and A. Sukhov Estimates of the Kobayashi metric on almost complex manifolds, Bull. Soc. Math. France 133(2005), 259-273.
DOI
|
13 |
H. Gaussier and A. Sukhov On the geometry of model almost complex manifolds with boundary, Math. Z. 254(2006), 567-589.
DOI
|