References
- T. Abe, An estimation of the alternation number of a torus knot, J. Knot Theory Ramifications 18(3) (2009), 363-379. https://doi.org/10.1142/S021821650900694X
- C. Adams, Almost alternating links, Topology and its applications 46 (1992), 151-165. https://doi.org/10.1016/0166-8641(92)90130-R
- C. Adams, The knot book, W. H. Freeman and Company. 1994.
- T. Abe and K. Kishimoto, The dealternation number and the alternation number of a closed 3-braid, J. Knot Theory Ramifications 19(9) (2010), 1157-1181. https://doi.org/10.1142/S0218216510008352
- J. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational problemas in abstract algebra, Pergamon Press, 1969.
- R. Crowell, Genus of alternating link types, Ann. of Math. 69 (1959), 258-275. https://doi.org/10.2307/1970181
- R. H. Fox, Some problems in knot theory, Prentice-Hall, 1962.
- C. McA. Gordon and R. Litherland, On the signature of a link, Invent. Math. 47 (1987), 53-69.
- J. Hoste, M. Thistlethwaite and J. Weeks, The First 1701936 Knots, Math. Intell. 20 (1998), 33-48. https://doi.org/10.1007/BF03025227
- T. Kanenobu, Upper bound for the alternation number of a torus knot, Topology Appl., in Press.
- A. Kawauchi, On alternation numbers of links, Topology Appl., in Press.
- D. Kim and J. Lee, On pretzel links, Bull. of Aust. Math. Soc. 75(2) (2007), 253-271. https://doi.org/10.1017/S0004972700039198
- W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984), 37-44. https://doi.org/10.1016/0040-9383(84)90023-5
- K. Murasugi, On the Alexander polynomial of alternating algebraic knots, J. of Aus. Math. Soc. 39 (1985), 317-333. https://doi.org/10.1017/S1446788700026094
- T. Van Zandt. PSTricks: PostScript macros for generic TEX. Available at ftp://ftp.princeton.edu/pub/tvz/.