References
- A. Akbar and M. Eslamian, Common fixed point results in CAT(0) spaces, Nonlinear Anal.: Theory, Method and Applications, Vol. 74 (2011), no. 5, 1835-1840. https://doi.org/10.1016/j.na.2010.10.056
-
M. Bestvina,
$^{(R)}$ -trees in topology, geometry, and graph theory, in Handbook of geometric topology, 55-91, North-Holland, Amsterdam, The Netherlands, 2002. - M. R. Bridson and A. Haeiger, Metric spaces of non-positive curvature, Vol. 319 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 1999.
- K. S. Brown, Buildings, Springer, New York, NY, USA, 1989.
- F. Bruhat and J. Tits, "Groups reductifs sur un corps local", Institut des Hautes Etudes Scientiques. Publications Mathematiques, Vol. 41 (1972), 5-251. https://doi.org/10.1007/BF02715544
- P. Chaoha and A. Phon-on, A note on fixed point sets in CAT(0) spaces, J. Math. Anal. Appl. 320 (2006), no. 2, 983-987. https://doi.org/10.1016/j.jmaa.2005.08.006
- S. Dhompongsa, A. Kaewkho and B. Panyanak, Lim's theorems for multivalued mappings in CAT(0) spaces, J. Math. Anal. Appl. 312 (2005), no. 2, 478-487. https://doi.org/10.1016/j.jmaa.2005.03.055
-
S. Dhompongsa and B. Panyanak, On
${\Delta}$ -convergence theorem in CAT(0) spaces, Comput. Math. Appl. 56 (2008), no. 10, 2572-2579. https://doi.org/10.1016/j.camwa.2008.05.036 - R. Espinola and A. Fernandez-Leon, CAT(k)-spaces, weak convergence and fixed point, J. Math. Anal. Appl. 353 (2009), no. 1, 410-427. https://doi.org/10.1016/j.jmaa.2008.12.015
-
R. Espinola and W. A. Kirk, Fixed point theorems in
$^{(R)}$ -trees with applications to graph theory, Topology Appl. 153 (2007), no. 7, 1046-1055. - H. Fukhar-ud-din and A. R. Khan, Convergence of implicit iterates with errors for mappings with unbounded domain in Banach spaces, Int. J. Math. Math. Sci. 10 (2005), 1643-1653.
- H. Fukhar-ud-din and A. R. Khan, Approximating common fixed points of asymptotically nonexpansive mappings in uniformly convex Banach spaces, Comput. Math. Appl. 53 (2007), no. 9, 1349-1360. https://doi.org/10.1016/j.camwa.2007.01.008
- H. Fukhar-ud-din, A. R. Khan, D. O'Regan and R. P. Agarwal, An implicit iteration scheme with errors for a finite family of uniformly continuous mappings, Funct. Diff. Equns. 14 (2007), no. 2-4, 245-256.
- H. Fukhar-ud-din and S. H. Khan, Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications, J. Math. Anal. Appl. 328 (2007), no. 2, 821-829. https://doi.org/10.1016/j.jmaa.2006.05.068
- H. Fukhar-ud-din, A. A. Domlo and A. R. Khan, Strong convergence of an implicit algorithm in CAT(0) spaces, Fixed Point Theory and Applications, (2011), Article ID 173621, 11 pages.
- K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Vol. 83 of Monograph and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc., New York, NY, USA, 1984.
- W. Guo and Y. J. Cho, On the strong convergence of the implicit iterative process with errors for a finite family of asymptotically nonexpansive mappings, Appl. Math. Lett. 21 (2008), no. 10, 1046-1052. https://doi.org/10.1016/j.aml.2007.07.034
- N. Hussain and M. A. Khamsi, On asymptotic pointwise contractions in metric spaces, Nonlinear Anal.: TMA, 71 (2009), no. 10, 4423-4429. https://doi.org/10.1016/j.na.2009.02.126
- S. Imnang and S. Suantai, Common fixed points of multi-step Noor iterations with errors for a finite family of generalized asymptotically quasi-nonexpansive mappings, Abstr. Appl. Anal. Vol. 2009, Article ID 728510, 14 pages.
- M. A. Khamsi and W. A. Kirk, An introduction to metric spaces and fixed point theory, Pure Appl. Math, Wiley-Interscience, New York, NY, USA, 2001.
- A. R. Khan, M. A. Khamsi and H. Fukhar-ud-din, Strong convergence of a general iteration scheme in CAT(0) spaces, Nonlinear Anal.: TMA, 74 (2011), no. 3, 783-791. https://doi.org/10.1016/j.na.2010.09.029
- A. R. Khan and M. A. Ahmed, Convergence of a general iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings in a convex metric spaces and applications, Comput. Math. Appl. 59 (2010), no. 8, 2990-2995. https://doi.org/10.1016/j.camwa.2010.02.017
- A. R. Khan, A. A. Domlo and H. Fukhar-ud-din, Common fixed points of Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 341 (2008), no. 1, 1-11. https://doi.org/10.1016/j.jmaa.2007.06.051
-
S. H. Khan and M. Abbas, Strong and
${\Delta}$ -convergence of some iterative schemes in CAT(0) spaces, Comput. Math. Appl. 61 (2011), no. 1, 109-116. https://doi.org/10.1016/j.camwa.2010.10.037 - W. A. Kirk, Geodesic geometry and fixed point theory, in Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), Vol. 64 of Coleccion Abierta, 195-225, University of Seville Secretary of Publications, Seville, Spain, 2003.
- W. A. Kirk, Geodesic geometry and fixed point theory II, in International Conference on Fixed point Theory and Applications, 113-142, Yokohama Publishers, Yokohama, Japan, 2004.
-
W. A. Kirk, Fixed point theory in CAT(0) spaces and
$^{(R)}$ -trees, Fixed Point Appl. 2004, no. 4, 309-316. - W. A. Kirk, Some recent results in metric fixed point theory, J. Fixed Point Theory Appl. 2 (2007), no. 2, 195-207. https://doi.org/10.1007/s11784-007-0031-8
-
W. Laowang and B. Panyanak, Strong and
${\Delta}$ convergence theorems for multivalued mappings in CAT(0) spaces, J. Inequal. Appl. Vol. 2009, Article ID 730132, 16 pages. - L. Leustean, A quadratic rate of asymptotic regularity for CAT(0)-spaces, J. Math. Anal. Appl. 325 (2007), no. 1, 386-399. https://doi.org/10.1016/j.jmaa.2006.01.081
- S. Saejung, Halpern's iteration in CAT(0) spaces, Fixed Point Theory Appl., Vol. 2010, Article ID 471781, 13 pages.
- C. Semple and M. Steel, Phylogenetics, Vol. 24 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, UK, 2003.
- N. Shahzad, Fixed point results for multimaps in CAT(0) spaces, Topology Appl. 156 (2009), no. 5, 997-1001. https://doi.org/10.1016/j.topol.2008.11.016
- Z. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 286 (2003), no. 1, 351-358. https://doi.org/10.1016/S0022-247X(03)00537-7
- K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308. https://doi.org/10.1006/jmaa.1993.1309
- H. K. Xu and R. G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optim. Vol. 22 (2001), no. 5-6, 767-773. https://doi.org/10.1081/NFA-100105317