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DEALTERNATING NUMBERS AND
CLASSICAL LINK INVARIANTS

Myung Jae Kim, Dong-Hee Lee, and Dongseok Kim

Abstract. Dealternating numbers and alternation numbers measure the
distance between the link and an alternating links. In the present article,
we show that classical link invariants; the determinant, signature and
Alexander polynomial can not detect the almost alternativity of links.

1. Introduction

A link L is a disjoint union of circles embedded in three dimensional sphere
S

3, and a knot K is a link with only one component. A link diagram DL is
a projection of the link L onto a plane as the link casting a shadow on the
wall which is one-to-one except at the double points, called crossings, where
the shadow of the link crosses itself once transversely and at each crossing,
to be able to recreate the original link, the over-strand must be distinguished
from the under-strand. A link is trivial if it admits a link diagram without
a crossing. A link is composite if it is a non-trivial link which cannot be
written as a connected sum of two non-trivial links. A link is prime if it is not
composite. A link diagram DL is alternating if the crossings alternate under,
over, under, over, as you travel along each component of the link. A link L is
alternating if it has an alternating diagram DL. Many of the knots with crossing
number less than 10 are alternating, the simplest non-alternating prime knots
have 8 crossings, in fact there are exactly three such knots. Alternating links
have been a centerpiece of the research of knots and links. Because of their
rigid structure, alternating links behave as good as one can expect. One of
geometric classifications of knots is to classify the knots by the geometries of
their complements; hyperbolic, torus or satellite links [3]. Menasco has shown
that prime alternating knots are either hyperbolic or torus knots [13].

A link diagram DL is an almost alternating diagram if one crossing change
makes the diagram alternating. A link L is almost alternating if it is not
alternating and there is an almost alternating diagram. Menasco’s result has
been generalized by Adams that prime almost alternating knots are either
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hyperbolic or torus knots [2]. It is known that no satellite knot is an almost
alternating knot [9]. Authors previously showed all classical pretzel knots are
either alternating or almost alternating [12]. Consequently, it provided that
all classical pretzel knots are hyperbolic except a complete list of pretzel knots
which are torus knots. However, to determine almost alternativity of a given
link is not easy. In the present article, we first show that the determinant,
signature and Alexander polynomial can not detect the almost alternativity of
links.

The concept of the almost alternativity can be generalized as follows. An
m-alternating link is a link that has a diagram in which m crossing changes
make it alternating, and has no diagram which can be made alternating with
fewer crossing changes. In particular, 1-alternating links are precisely almost
alternating links. However, instead of a fixed diagram with a simultaneous
crossing changes, we might allow link isotopies in the process between link
diagrams of an alternating link and the link. Kawauchi called the minimum
number of crossing changes to deform L to an alternating link the alternation
number of the link L, denoted by alt(L), in fact, he defined it for much general
setting for two arbitrary links, named Gordian distance [11]. Contrarily, we say
the dealternating number of link L is m if L is an m-alternating link, denoted
by dalt(L). It is easy to observe that alt(L) ≤ dalt(L), however, there do exists
a link with a strict inequality. Recently, a series of articles has shown many
interesting results. Abe found new lower bounds applying Livingston’s result to
Rasmussen s-invariant, Ozsvath-Szabo τ -invariants and signatures and proves
that only almost alternating torus knots are (3, 4) and (3, 5) torus knots [1].
She also find infinitely many knots which hold proper inequality. Abe and
Kishimoto found the dealternating number and alternation number of some
of closed 3-braids [4]. Kanenobu found the alternation number of a few torus
knot [10].

2. Main results

One of original goals of our research on almost alternating knots was to find
a knot invariant which can detect almost alternativity of knots. However, it
was not successful and we find that the determinant, signature and Alexander
polynomial can not detect the almost alternativity of knots in the rest of section.

2.1. Determinant

We find that for a given any odd integer 2k + 1, there are infinitely many
almost alternating pretzel knots whose determinant is |2k + 1|. Let us briefly
review about the pretzel links. Let L(p1, p2, . . . , pn) be an n-pretzel link in S

3

where pi ∈ Z represents the number of half twists as depicted in Figure 1. In
particular, if n = 3, it is called a classical pretzel link, denoted by L(p, q, r).

For a given link L, we can find a Seifert surface F , an orientable surface
whose boundary is L. Let a1, a2, . . . , an be a basis for the first homology
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p1 p2 p3 . . . pn−1 pn

Figure 1. An n-pretzel link L(p1, p2, . . . , pn)

groups of the complement of L, H1(S3 − L). A Seifert matrix VL of L is
an n × n matrix whose (i, j) entry is the link number between ai and a+

j

which is obtained from aj by pushing slightly off F in the positive normal
direction. The determinant of a link is the determinant of the Seifert matrix
of VL + V t

L. The Alexander polynomial of link L, ΔL(t) is the determinant
of VL − tV t

L. Thus, the determinant of a knot K is equal to ΔK(−1) where
ΔK(t) is the Alexander polynomial of L. Since the Alexander polynomial can
be obtained from the Conway polynomial as ΔL(t2) = ΛL(t − t−1). Using the
result about the Conway polynomialss of pretzel links [12], we can easily find
that the determinant of an n-pretzel link L(p1, p2, · · · , pn) is |∑n

i=1 p1p2 · · · p̂i

· · · pn|, where p̂i is deleted in the summation. In particular, the determinant
of a classical pretzel link L(p, q, r) is |pq + pr + qr|. In the following examples,
we find that for a given any odd integer 2k + 1, there are infinitely many
almost alternating pretzel knots whose determinant is |2k + 1|. Therefore, the
determinant can not detect the almost alternativity.

Example 2.1. For each p, K(p, 1 − p, (2k + 1) + p(p − 1)) has determinant
|2k + 1|.
Example 2.2. For each p, K(p,−(p−1), 1+p(p−1), 1+p(p−1)+p2(p−1)2,
(2k + 1) + p(p − 1) + p2(p − 1)2 + (p(p − 1) + p2(p − 1)2)2) has determinant
|2k+1|. Inductively the (2l +1)-pretzel knot K(p1, p2, · · · , p2l−1, 1−∏2l−1

i=1 pi,
2k + 1−∏2l−1

i=1 pi + (
∏2l−1

i=1 pi)2) has determinant 1, where K(p1, p2, · · · , p2l−1)
has determinant 1.

2.2. Signature

There are several ways to find the signature of a given knot. One can use
the Seifert matrix of the knot. But, this matrix might be too big for some
pretzel knots (actually this is true once we have an even pi). One effective
way was introduced by Gordon and Litherland by using the Goeritz matrix
and μ(D) [8]. Using this method, we can find the signature of pretzel knots of
K(p, q, r) and K(2l, q, r) where p, q, r are odd.
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Proposition 2.3.

σ(K(p, q, r)) =

⎧⎨
⎩

2 if pq + pr + qr > 0 and p + q + r > 0,
0 if pq + pr + qr < 0,
−2 if pq + pr + qr > 0 and p + q + r < 0.

σ(K(2l, q, r)) =

⎧⎨
⎩

−q − r if 2l(q + r) + qr < 0,
−q − r + 2 if 2l(q + r) + qr > 0 and 2l + q + r > 0,
−q − r − 2 if 2l(q + r) + qr > 0 and 2l + q + r < 0.

For n-pretzel knots, we will only look at K(2k1 +1, 2k2 +1, · · · , 2kn +1) for
the rest of the subsection. To find the signature we will use a Seifert surface F
but we will choose the one which consists of two discs with twisted bands. From
it we choose n−1 natural generators of H1(F ) which run along adjacent bands.
The Seifert matrix VK(2k1+1,2k2+1,··· ,2kn+1) of K(2k1 + 1, 2k2 + 1, · · · , 2kn + 1)
is

⎛
⎜⎜⎜⎜⎜⎜⎝

k1 + k2 + 1 k2 + 1 0 · · · 0 0
k2 k2 + k3 + 1 k3 + 1 · · · 0 0
0 k3 k3 + k4 + 1 · · · 0 0
: : : : : :
0 0 0 · · · kn−2 + kn−1 + 1 kn−1 + 1
0 0 · · · kn−1 kn−1 + kn + 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Recall that the signature of a knot K is r − s where r, s are the number
of positive, negative eigenvalues of (VK)t + VK , respectively. The following
examples illustrate that the signature can not detect the almost alternativity.

Example 2.4. For each l, K(−l − m, l,−l + m) has signature 0, and K(−l +
m, l,−l + m) has signature 2 for all m ≥ 2.

Example 2.5. For each 2l, the (2l+1)-pretzel knot K(m,−m, m,−m, · · · ,−m,
m) and the 2k-pretzel knot K(2, 1, 1, · · · , 1,−2l− 2− (sign of l)1) have signa-
ture 2l for all m ≥ 3, k > 1.

2.3. Alexander Polynomial

For an almost alternating knot, we can see that its polynomial is obtained
from an alternating knot and another alternating link in the skein relation.
So we might expect that the polynomial of an almost alternating knot might
have some properties analogous to those for alternating knots. For example,
the Alexander polynomials of alternating knots are alternative and symmetric
where an integral polynomial p(t) =

∑m
i=0 cit

i is alternative if 1) all the ci are
nonzero and 2) sign(ci) = −sign(ci+1) for all i = 1, 2, · · · , m−1 and an integral
polynomial is symmetric if tmp(1/t) = p(t). However, we remark that this is
not a sufficient condition i.e., there are a lot of knots with alternative Alexander
polynomials which are not alternating. In fact, there are only 3 knots up to 10
crossings whose Alexander polynomials are not alternative. Moreover, R. H.
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Fox conjectured that the Alexander polynomial of an alternating knot ΔK(−t)
has the following property, called trapezoidal [7]. An integral polynomial p(t) =∑m

i=0 cit
i is trapezoidal if 1) all the ci are nonzero and have the same sign,

2) tmp(1/t) = p(t), 3) |c0| ≤ |c1| ≤ · · · ≤ |ck| where k = [m/2] and 4) if
ci = ci+1, ci = cj for all i ≤ j ≤ k. For alternating links, we can use t1/2ΔL(−t)
for Fox’s conjecture. It is known that Fox’s conjecture is true for alternating
algebraic knots [14].

If we assume that Fox’s conjecture is true for all alternating links, to show
that a knot is not almost alternating we might show that its Alexander polyno-
mial is not the skein sum of ΔK′ , ΔL where ΔK′(−t), ΔL(−t) are trapezoidal.
It is not difficult to see that degreeΔL = degreeΔK′ − 1 by the result of R.
Crowell [6]. If we don’t assume Fox’s conjecture, it is easy to see that the above
sentence is nonsense i.e, we can always find a pair of integral polynomials which
satisfy the previous conditions.

Up to 11 crossings there are three knots and two links for which we can’t
decide whether they are almost alternating or not. We will find the Alexander
polynomials of these knots K(a), K(b), K(c) to get some information.

ΔK(a)(t) = t6 − t5 − t4 + 3t3 − t2 − t + 1

ΔK(b)(t) = t6 + t5 − 6t4 + 9t3 + −6t2 + t + 1

ΔK(c)(t) = −t6 + 4t5 − 4t4 + 3t3 − 4t2 + 4t − 1

We can see that none of these Alexander polynomials of −t are trapezoidal.
Unfortunately, we can find some polynomials which contradict our expectation.

t6 − t5 − t4 + 3t3 − t2 − t + 1 = [2t6 − 4t5 + 7t4 − 9t3 + 7t2 − 4t + 2]

+(t−1/2 − t1/2)t1/2[t5 − 2t4 + 6t3 − 6t2 + 2t − 1]

t6 + t5 − 6t4 + 9t3 − 6t2 + t + 1 = [2t6 − 4t5 + 6t4 − 7t3 + 6t2 − 4t + 2]

+(t−1/2 − t1/2)t1/2[t5 − 4t4 + 8t3 − 8t2 + 4t − 1]

−t6 + 4t5 − 4t4 + 3t3 − 4t2 + 4t − 1 = [t6 − 2t5 + 5t4 − 7t3 + 5t2 − 2t + 1]

+(t−1/2 − t1/2)t1/2[2t5 − 4t4 + 5t3 − 5t2 + 4t − 2]

Now, to show that such polynomials exist for all almost alternating knots we
have to solve the following integral equation keeping the trapezoidal condition.
Recall that the degree of two Alexander polynomials of two alternating links
are related as in the equation because the equality in the equation 1 holds for
alternating links as we mentioned in the beginning of this section.

(a1, a2 , a3 , · · · , ak, ak+1, ak, · · · , a3, a2, a1) (1)

=(b1,−b2, b3, · · · , (−1)k−1bk, (−1)kbk+1, (−1)k−1bk, · · · , b3,−b2, b1)
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+(c1,−c2, c3, · · · , (−1)k−1ck, (−1)kck, (−1)k−1ck−1, · · · , c2,−c1, 0)

+(0,−c1, c2, · · · , (−1)k−1ck−1, (−1)kck, (−1)k−1ck, · · · , c3,−c2, c1)

Theorem 2.6. The equation 1 has a solution which satisfies the trapezoidal
condition.

Proof. The equation can be represented this way : a1 = b1+c1, a2 = −(b2+c1+
c2), a3 = b3 + c2 + c3, · · · , ak = (−1)k−1(bk + ck−1 + ck), ak+1 = (−1)k(bk+1 +
2ck). We add the following conditions to ensure that the trapezoidal condition
holds : 1) |bi| ≤ |bj |, |ci| ≤ |cj | for all i < j, 2) if bi = bi+1, bi = bj for all
i ≤ j ≤ k + 1, if ci = ci+1, ci = cj for all i ≤ j ≤ k, and either 3) ci > 0 > bj

or 4) bi > 0 > cj . Note that these are sufficient conditions for the trapezoidal
condition. We will prove that there are at least two solutions, which satisfy
conditions 1), 2), 3) and 1), 2), 4), respectively. Induct on k. For k = 0, let
bk+1 = ak+1. For n = 1, we get b2 = b1 − (2a1 + a2) by eliminating c1. Thus,
we have solutions b2 > b1 > 0 > c1, b′2 > b′1 > 0 > c′1 for sufficiently large
b1,−b′1 > 0. Now we assume for k = n, if we take cn−1 = cn then by the
induction hypothesis we have two solutions which satisfy above conditions and
the first k equations.

All we need to show is to make bk+1 satisfy the given condition. We notice
that we have infinitely many solutions from a given solution by increasing the
absolute values of the bi’s and cj ’s by 1 for b1, cj, by 2 for bi, i �= 1. Also
after fixing cn−1, we can make the similar changes for cn, bn and bn+1. If
|bn| > |bn+1|, we consider the two cases : 1) bn, bn+1 have the same sign, 2)
bn, bn+1 have different signs. If bn, bn+1 have the same sign, then we have a
solution by increasing the absolute values of cn, bn and bn+1 by 1 for cn, bn

and by 2 for bn+1. So eventually we find new cn, bn and bn+1 satisfying all
conditions. If bn, bn+1 have different signs, without loss of generality we assume
that cn, bn+1 > 0 > bn. But increasing cn by 1 will decrease bn by 1 and bn+1

by 2, thus it reduces to the first case and it stops at finite steps. This completes
the proof of the theorem. �
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