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AN IMPLICIT ITERATES FOR NON-LIPSCHITZIAN

ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE

MAPPINGS IN CAT(0) SPACES

G. S. Saluja

Abstract. The purpose of this paper is to establish strong convergence

of an implicit iteration process to a common fixed point for a finite family
of asymptotically quasi-nonexpansive type mappings in CAT(0) spaces.

Our results improve and extend the corresponding results of Fukhar-ud-

din et al. [15] and some others from the current literature.

1. Introduction

A metric space X is a CAT(0) space if it is geodesically connected and if
every geodesic triangle inX is at least as ”thin” as its comparison triangle in the
Euclidean plane. The precise definition is given below. It is well known that any
complete, simply connected Riemannian manifold having nonpositive sectional
curvature is a CAT(0) space. Other examples include Pre-Hilbert spaces (see
[3]), R-trees (see [27]), Euclidean buildings (see [4]), the complex Hilbert ball
with a hyperbolic metric (see [16]), and many others. For a thorough discussion
of these spaces and of the fundamental role they play in geometry, we refer the
reader to Bridson and Haefliger [3].

Fixed point theory in CAT(0) spaces was first studied by Kirk (see [25,
26]). He showed that every nonexpansive (single-valued) mapping defined on a
bounded closed convex subset of a complete CAT(0) space always has a fixed
point. Since then the fixed point theory for single-valued and multi-valued
mappings in CAT(0) spaces has been rapidly developed and many papers have
appeared (see, e.g., [1], [6]-[9], [18], [21], [24], [29]-[31], [33] and references
therein). It is worth mentioning that fixed point theorems in CAT(0) spaces
(specially in R-trees) can be applied to graph theory, biology and computer
science (see,e.g., [2, 10, 26, 28, 32]).

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X
(or, more briefly, a geodesic from x to y) is a map c from a closed interval
[0, l] ⊂ R to X such that c(0) = x, c(l) = y, and let d(c(t), c(t′)) = |t − t′| for
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all t, t′ ∈ [0, l]. In particular, c is an isometry, and d(x, y) = l. The image α of
c is called a geodesic (or metric) segment joining x and y. We say X is (i) a
geodesic space if any two points of X are joined by a geodesic and (ii) uniquely
geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X, which
we will denoted by [x, y], called the segment joining x to y.

A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists
of three points in X (the vertices of 4) and a geodesic segment between each
pair of vertices (the edges of 4). A comparison triangle for geodesic triangle
4(x1, x2, x3) in (X, d) is a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in R2 such
that dR2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}. Such a triangle always exists
(see [3]).

A geodesic metric space is said to be a CAT (0) space if all geodesic triangles
of appropriate size satisfy the following CAT (0) comparison axiom.

Let 4 be a geodesic triangle in X and let 4 ⊂ R2 be a comparison triangle
for 4. Then 4 is said to satisfy the CAT (0) inequality if for all x, y ∈ 4 and
all comparison points x, y ∈ 4,

d(x, y) ≤ d(x, y). (1)

Complete CAT (0) spaces are often called Hadamard spaces (see [20]). If
x, y1, y2 are points of a CAT (0) space and y0 is the mid point of the seg-
ment [y1, y2] which we will denote by (y1 ⊕ y2)/2, then the CAT (0) inequality
implies

d2
(
x,
y1 ⊕ y2

2

)
≤ 1

2
d2(x, y1) +

1

2
d2(x, y2)− 1

4
d2(y1, y2). (2)

The inequality (2) is the (CN) inequality of Bruhat and Titz [5]. The above
inequality has been extended in [8] as

d2(z, αx⊕ (1− α)y) ≤ αd2(z, x) + (1− α)d2(z, y)

−α(1− α)d2(x, y). (3)

for any α ∈ [0, 1] and x, y, z ∈ X.
Let us recall that a geodesic metric space is a CAT (0) space if and only if it

satisfies the (CN) inequality (see [3, page 163]). Moreover, if X is a CAT (0)
metric space and x, y ∈ X, then for any α ∈ [0, 1], there exists a unique point
αx⊕ (1− α)y ∈ [x, y] such that

d(z, αx⊕ (1− α)y) ≤ αd(z, x) + (1− α)d(z, y), (4)

for any z ∈ X and [x, y] = {αx⊕ (1− α)y : α ∈ [0, 1]}.
A subset C of a CAT (0) space X is convex if for any x, y ∈ C, we have

[x, y] ⊂ C.
Let T be a self map on a nonempty subset C of X. Denote the set of fixed

points of T by F (T ) = {x ∈ C : T (x) = x}. We say that T is:
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(1) asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞)
with limn→∞ kn = 1 such that

d(Tnx, Tny) ≤ knd(x, y), (5)

for all x, y ∈ C and n ≥ 1.
(2) asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there exists a se-

quence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

d(Tnx, p) ≤ knd(x, p), (6)

for all x ∈ C, p ∈ F (T ) and n ≥ 1.
(3) asymptotically quasi-nonexpansive type if F (T ) 6= ∅ and

lim sup
n→∞

{
sup

x∈C, p∈F (T )

(
d(Tnx, p)− d(x, p)

)}
≤ 0. (7)

(4) uniformly L-Lipschitzian if there exists a constant L > 0 such that

d(Tnx, Tny) ≤ L d(x, y), (8)

for all x, y ∈ C and n ≥ 1.
(5) semi-compact if for any bounded sequence {xn} in C with d(xn, Txn)→

0 as n→∞, there is a convergent subsequence of {xn}.
Denote the indexing set {1, 2, . . . , N} by I. Let {Ti : i ∈ I} be the set

of N self mappings of C. Throughout the paper, it is supposed that F =⋂N
i=1 F (Ti) 6= ∅. We say condition (A) [15] is satisfied if there exists a nonde-

creasing function f : [0,∞)→ [0,∞) with f(0) = 0, f(r) > 0 for all r ∈ (0,∞)
and at least one T ∈ {Ti : i ∈ I} such that d(x, Tx) ≥ f(d(x, F )) for all x ∈ C
where d(x, F ) = inf{d(x, p) : p ∈ F}.

Recently, number of papers have appeared on the iterative approximation of
fixed points of asymptotically nonexpansive (asymptotically quasi-nonexpansive)
mappings through Mann, Ishikawa and implicit iterates in uniformly convex
Banach spaces, convex metric spaces and CAT(0) spaces (see, e.g., [11]-[14],
[17], [19], [21]-[23], [34], [36]).

Very recently, Fukhar-ud-din et al. [15] generalized the Sun’s [34] implicit
algorithm in CAT(0) space by using the concept of convexity in CAT(0) space.
The generalized implicit algorithm is as follows:

x0 ∈ C,
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x1 = α1x0 ⊕ (1− α1)T1x1,

x2 = α2x1 ⊕ (1− α2)T2x2,

...

xN = αNxN−1 ⊕ (1− αN )TNxN ,

xN+1 = αN+1xN ⊕ (1− αN+1)T 2
1 xN+1, (9)

...

x2N = α2Nx2N−1 ⊕ (1− α2N )T 2
Nx2N ,

x2N+1 = α2N+1x2N ⊕ (1− α2N+1)T 3
1 x2N+1,

...

where 0 ≤ αn ≤ 1.
Starting from arbitrary x0 ∈ C, the above process in the compact form can

be written as

xn = αnxn−1 ⊕ (1− αn)T
k(n)
i(n) xn, n ≥ 1, (10)

where n = (k − 1)N + i, i = i(n) ∈ I and k = k(n) ≥ 1 is a positive integer
such that k(n) → ∞ as n → ∞. They have proved some strong convergence
theorems using implicit iteration scheme (10) for a finite family of generalized
asymptotically quasi-nonexpansive mappings in CAT(0) space and also gave
the necessary and sufficient condition to converge to common fixed point for
said mappings in CAT(0) space.

In a normed space, iteration scheme (10) can be written as

xn = αnxn−1 + (1− αn)T
k(n)
i(n) xn, n ≥ 1, (11)

where n = (k − 1)N + i, i = i(n) ∈ I and k = k(n) ≥ 1 is a positive integer
such that k(n)→∞ as n→∞.

The iteration scheme (10) - (11) exist as follows.
Let X be a CAT(0) space. Then, the following inequality holds:

d(λx⊕ (1− λ)z, λy ⊕ (1− λ)w) ≤ λd(x, y) + (1− λ)d(z, w), (12)

for all x, y, z, w ∈ X (see [30]).
Denote the indexing set {1, 2, . . . , N} by I. Let {Ti : i ∈ I} be N uniformly

L-Lipschitzian asymptotically quasi-nonexpansive type self-mappings of C. We
show that (12) exists. Let x0 ∈ C and x1 = α1x0 ⊕ (1 − α1)T1x1. Define
W : C → C by: Wx = α1x0 ⊕ (1 − α1)T1x for all x ∈ C. The existence of x1
is guaranteed if W has a fixed point. For any x, y ∈ C, we have

d(Wx,Wy) ≤ (1− α1)d(T1x, T1y) ≤ (1− α1)Ld(x, y). (13)

Now, W is a contraction if (1−α1)L < 1 or L < 1/(1−α1). As α1 ∈ (0, 1),
thereforeW is a contraction even if L > 1. By the Banach contraction principle,
W has a unique fixed point. Thus, the existence of x1 is established. Similarly,
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we can establish the existence of x2, x3, x4, . . . . Thus, the implicit algorithm
(10) is well defined. Similarly, we can prove that (11) exists.

The purpose of this paper is to study strong convergence of implicit iteration
process (10) for the class of uniformly L-Lipschitzian and asymptotically quasi-
nonexpansive type self mappings on a CAT(0) space. Our results extend the
corresponding results of Fukhar-ud-din et al. [15] and many others.

We need the following useful lemma to prove our convergence results.

Lemma 1.1. (see [35]) Let {an} and {bn} be sequences of nonnegative real
numbers satisfying the inequality

an+1 ≤ an + bn, n ≥ 1. (14)

If
∑∞

n=1 bn < ∞, then limn→∞ an exists. In particular, if {an} has a subse-
quence converging to zero, then limn→∞ an = 0.

2. Convergence in CAT(0) spaces

We establish some convergence results for the iteration scheme (10) to a
common fixed point of a finite family of uniformly L-Lipschitzian and asymp-
totically quasi-nonexpansive type self mappings in the framework of CAT(0)
spaces.

Theorem 2.1. Let (X, d) be a complete CAT(0) space and let C be a nonempty
closed convex subset of X. Let Let {Ti : i ∈ I} be N uniformly L-Lipschitzian
and asymptotically quasi-nonexpansive type self mappings of C. Suppose that
F is closed. Let {xn} be the implicit iteration process defined by (10). Put

Gin = max
{

0, sup
p∈F, n≥1

(
d(Tn

i xn, p)− d(xn, p)
)

: i ∈ I
}
, (15)

where n = (k − 1)N + i and i = i(n) ∈ I. Assume that
∑∞

n=1Gin < ∞ and
{αn} ⊂ [s, 1−s] for some s ∈ (0, 12 ). Then the sequence {xn} converges strongly
to a common fixed point p of the mappings {Ti : i ∈ I} if and only if

lim inf
n→∞

d(xn, F ) = 0,

where d(x, F ) = infp∈F {d(x, p)}.

Proof. The necessity is obvious and so it is omitted. Now, we prove the suf-
ficiency. For any p ∈ F = ∩Ni=1F (Ti) from (10) and (15), where n ≥ 1,
n = (k − 1)N + i and i = i(n) ∈ I, we have

d(xn, p) = d
(
αnxn−1 ⊕ (1− αn)T

k(n)
i(n) xn, p

)
≤ αnd(xn−1, p) + (1− αn)d

(
T

k(n)
i(n) xn, p

)
≤ αnd(xn−1, p) + (1− αn)[d(xn, p) +Gik(n)]

= αnd(xn−1, p) + (1− αn)d(xn, p) + (1− αn)Gik(n). (16)
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Since αn ∈ (s, 1− s), the above inequality gives that

d(xn, p) ≤ d(xn−1, p) +
(1

s
− 1
)
Gik(n)

= d(xn−1, p) +Qik(n), (17)

where Qik(n) =
(

1
s − 1

)
Gik(n). Since

∑∞
k(n)=1Gik(n) < ∞ for all i ∈ I, it

follows that
∑∞

k(n)=1Qik(n) < ∞. Therefore, from Lemma 1.1, we know that

limn→∞ d(xn, F ) exists. Since by hypothesis lim infn→∞ d(xn, F ) = 0, so by
Lemma 1.1, we have

lim
n→∞

d(xn, F ) = 0. (18)

Next we prove that {xn} is a Cauchy sequence in C. It follows from (17) that
for any m ≥ 1, for all n ≥ n0 and for any p ∈ F , we have

d(xn+m, p) ≤ d(xn, p) +

N∑
i=1

∞∑
k(n)=1

Qik(n). (19)

So, we have

d(xn+m, xn) ≤ d(xn+m, p) + d(xn, p)

≤ d(xn, p) +

N∑
i=1

∞∑
k(n)=1

Qik(n) + d(xn, p)

= 2d(xn, p) +

N∑
i=1

∞∑
k(n)=1

Qik(n). (20)

Then, we have

d(xn+m, xn) ≤ 2d(xn, F ) +

N∑
i=1

∞∑
k(n)=1

Qik(n). (21)

For any given ε > 0, there exists a positive integer n1 ≥ n0 such that for any
n ≥ n1,

d(xn, F ) <
ε

4
, (22)

and

N∑
i=1

∞∑
k(n)=1

Qik(n) <
ε

2
. (23)

Thus, from (21)-(23) and n ≥ n1, we have

d(xn+m, xn) < 2.
ε

4
+
ε

2
= ε. (24)
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This implies that {xn} is a Cauchy sequence in C. Thus, the completeness of
X implies that {xn} must be convergent. Assume that limn→∞ xn = z. Since
C is closed, therefore z ∈ C. Next, we show that z ∈ F . Now, the following
two inequalities:

d(z, p) ≤ d(z, xn) + d(xn, p) ∀p ∈ F, n ≥ 1,

d(z, xn) ≤ d(z, p) + d(xn, p) ∀p ∈ F, n ≥ 1

give that

−d(z, xn) ≤ d(z, F )− d(xn, F ) ≤ d(z, xn), n ≥ 1. (25)

That is,

|d(z, F )− d(xn, F )| ≤ d(z, xn), n ≥ 1. (26)

As limn→∞ xn = z and limn→∞ d(xn, F ) = 0, we conclude that z ∈ F . �

Theorem 2.2. Let (X, d) be a complete CAT(0) space and let C be a nonempty
closed convex subset of X. Let {Ti : i ∈ I} be N uniformly L-Lipschitzian and
asymptotically quasi-nonexpansive type self mappings of C. Suppose that F is
closed. Let {xn} be the implicit iteration process defined by (10). Put

Gin = max
{

0, sup
p∈F, n≥1

(
d(Tn

i xn, p)− d(xn, p)
)

: i ∈ I
}
,

where n = (k − 1)N + i and i = i(n) ∈ I. Assume that
∑∞

n=1Gin < ∞
and {αn} ⊂ [s, 1 − s] for some s ∈ (0, 12 ). Then the sequence {xn} converges
strongly to a common fixed point p of the mappings {Ti : i ∈ I} if and only if
there exists a subsequence {xnj} of {xn} which converges to p ∈ F .

Proof. The proof of Theorem 2.2 follows from Lemma 1.1 and Theorem 2.1. �

We prove a lemma which plays an important role in establishing strong
convergence of the implicit iteration process with errors in a CAT (0) space.

Lemma 2.3. Let (X, d) be a complete CAT(0) space and let C be a nonempty
closed convex subset of X. Let Let {Ti : i ∈ I} be N uniformly L-Lipschitzian
and asymptotically quasi-nonexpansive type self mappings of C. Suppose that
F is closed. Let {xn} be the implicit iteration process defined by (10). Put

Gin = max
{

0, sup
p∈F, n≥1

(
d(Tn

i xn, p)− d(xn, p)
)

: i ∈ I
}
,

where n = (k − 1)N + i and i = i(n) ∈ I. Assume that
∑∞

n=1Gin < ∞ and
{αn} ⊂ [s, 1 − s] for some s ∈ (0, 12 ). Then limn→∞ d(xn, Tlxn) = 0 for all
l ∈ I.

Proof. Note that {xn} is bounded as limn→∞ d(xn, p) exists (proved in Theo-
rem 2.1). So, there exists R > 0 and x0 ∈ X such that xn ∈ BR(x0) = {x :

d(x, x0) < R} for all n ≥ 1. Let σn = d
(
xn−1, T

k(n)
i(n)

)
.

We claim that limn→∞ σn = 0.



88 G. S. SALUJA

For any p ∈ F , using (3) and (10), we get

d2(xn, p) = d2
(
αnxn−1 ⊕ (1− αn)T

k(n)
i(n) xn, p

)
≤ αnd

2(xn−1, p) + (1− αn)d2
(
T

k(n)
i(n) xn, p

)
−αn(1− αn)d2

(
T

k(n)
i(n) xn, xn−1

)
≤ αnd

2(xn−1, p) + (1− αn)[d(xn, p) +Gik(n)]
2

−αn(1− αn)d2
(
T

k(n)
i(n) xn, xn−1

)
≤ αnd

2(xn−1, p) + (1− αn)[d2(xn, p) + δik(n)]

−αn(1− αn)d2
(
T

k(n)
i(n) xn, xn−1

)
, (27)

where δik(n) = G2
ik(n) + 2Gik(n)d(xn, p). Since

∑∞
k(n)=1Gik(n) < ∞, it follows

that
∑∞

k(n)=1 δik(n) <∞.

Since s ≤ αn ≤ (1− s), from (27), we obtain

s2σ2
n ≤ αnd

2(xn−1, p)− d2(xn, p) + (1− αn)d2(xn, p)

+(1− αn)δik(n)

= αnd
2(xn−1, p)− αnd

2(xn, p) + (1− αn)δik(n), (28)

further, using (17), we obtain

s2σ2
n ≤ αnd

2(xn−1, p)− αn[d(xn−1, p) +Qik(n)]
2

+(1− αn)δik(n)

≤ αnd
2(xn−1, p)− αn[d2(xn−1, p) + θik(n)]

+(1− αn)δik(n), (29)

where θik(n) = Q2
ik(n) +Qik(n)d(xn−1, p). Since

∑∞
k(n)=1Qik(n) <∞, it follows

that
∑∞

k(n)=1 θik(n) <∞. The inequality (29) gives that

σ2
n ≤

(1− s
s2

)
δik(n) −

(1

s

)
θik(n). (30)

For m ≥ 1, we have that

m∑
n=1

σ2
n ≤

(1− s
s2

) m∑
k(n)=1

δik(n) −
(1

s

) m∑
k(n)=1

θik(n). (31)

When m → ∞, we have that
∑∞

n=1 σ
2
n < ∞ as

∑∞
k(n)=1 δik(n) < ∞ and∑∞

k(n)=1 θik(n) <∞.

Hence,

lim
n→∞

σn = 0. (32)
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Further,

d(xn, xn−1) ≤ (1− αn)d
(
T

k(n)
i(n) xn, xn−1

)
= (1− αn)σn ≤ (1− s)σn, (33)

implies that limn→∞ d(xn, xn−1) = 0.
For a fixed j ∈ I, we have d(xn+j , xn) ≤ d(xn+j , xn+j−1) + · · ·+d(xn, xn−1)

and hence

lim
n→∞

d(xn+j , xn) = 0 ∀j ∈ I. (34)

For n > N , n = (n − N)(mod N). Also, n = (k(n) − 1)N + i(n). Hence,
n−N = ((k(n)−1)−1)N+ i(n) = k(n−N)N+ i(n−N). That is, k(n−N) =
k(n)− 1 and i(n−N) = i(n).

Therefore, we have

d(xn−1, Tnxn) ≤ d
(
xn−1, T

k(n)
i(n) xn

)
+ d
(
T

k(n)
i(n) xn, Tnxn

)
≤ σn + Ld

(
T

k(n)−1
i(n) xn, xn

)
≤ σn + L2d(xn, xn−N ) + Ld

(
T

k(n−N)
i(n−N) xn−N , x(n−N)−1

)
+Ld(x(n−N)−1, xn)

= σn + L2d(xn, xn−N ) + Lσn−N

+Ld(x(n−N)−1, xn), (35)

using (32) and (34) in (35) yields that limn→∞ d(xn−1, Tnxn) = 0.
Since,

d(xn, Tnxn) ≤ d(xn, xn−1) + d(xn−1, Tnxn), (36)

we have

lim
n→∞

d(xn, Tnxn) = 0. (37)

Hence, for all l ∈ I, we have

d(xn, Tn+lxn) ≤ d(xn, xn+l) + d(xn+l, Tn+lxn+l)

+d(Tn+lxn+l, Tn+lxn)

≤ (1 + L)d(xn, xn+l) + d(xn+l, Tn+lxn+l), (38)

using (34) and (37) in (38) implies that

lim
n→∞

d(xn, Tn+lxn) = 0 ∀ l ∈ I. (39)

Thus, limn→∞ d(xn, Tlxn) = 0 for all l ∈ I. �

Theorem 2.4. Let (X, d) be a complete CAT(0) space and let C be a nonempty
closed convex subset of X. Let Let {Ti : i ∈ I} be N uniformly L-Lipschitzian
and asymptotically quasi-nonexpansive type self mappings of C. Suppose that
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F is closed, and there exists one member T in {Ti : i ∈ I} which is either semi-
compact or satisfies condition (A). Let {xn} be the implicit iteration process
defined by (10). Put

Gin = max
{

0, sup
p∈F, n≥1

(
d(Tn

i xn, p)− d(xn, p)
)

: i ∈ I
}
,

where n = (k − 1)N + i and i = i(n) ∈ I. Assume that
∑∞

n=1Gin < ∞
and {αn} ⊂ [s, 1 − s] for some s ∈ (0, 12 ). Then {xn} converges strongly to a
common fixed point of the mappings in {Ti : i ∈ I}.

Proof. Without loss of generality, we may assume that T1 is semi-compact or
satisfies condition (A). If T1 is semi-compact, then there exists a subsequence
{xnj
} of {xn} such that xnj

→ p∗ ∈ C as j →∞. Now, Lemma 2.3 guarantees
that limn→∞ d(xnj , Tlxnj ) = 0 for all l ∈ I and so d(p∗, Tlp

∗) = 0 for all l ∈ I.
This implies that p∗ ∈ F . Therefore, lim infn→∞ d(xn, F ) = 0. If T1 satisfies
condition (A), then we also have lim infn→∞ d(xn, F ) = 0. Now, Theorem 2.1
guarantees that {xn} converges strongly to a point in F . �

Remark 1. Our results extend the corresponding results of Fukhar-ud-din et
al. [15] to the case of more general class of generalized asymptotically quasi-
nonexpansive mappings considered in this paper.
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