어류수정란 발달에 미치는 나노독성 연구동향: (2) 금속계 나노물질

Effect of Nanomaterials on the Early Development of Fish Embryos: (2) Metallic Nanomaterials

  • Shin, Yu-Jin (Department of Environmental Science, Konkuk University) ;
  • An, Youn-Joo (Department of Environmental Science, Konkuk University)
  • 발행 : 2012.11.30

초록

Because of their unique properties, nano-sized metallic nanomaterials (NMs) have been used in extensive applications of biomedicine, electronics, optics, engineering, and personal care products. Accordingly, with the increasing release of NMs into the environment, numerous studies of nanoecotoxicity have been conducted. Fish embryo toxicity test (FET) has many benefits in evaluating toxicity of NMs as an alternative to a whole-body test in fish. In this study, we collected and analyzed the toxicity studies of metallic NMs on freshwater fish embryos. Most studies have demonstrated that metallic NMs are highly toxic during the early development of fish embryos. However, it should be noted that the results for the same NMs on the same test species show variation due to differences in the size or surface properties of the test NMs and exposure conditions. For the safe use of metallic NMs, we need to analyze their effects based on their properties, test species, environmental media, and diverse conditions.

키워드

참고문헌

  1. Adams, L. K., Lyon, D. Y., and Alvarez, P. J. J. (2006). Comparative Eco-Toxicity of Nanoscale $TiO_2$, $SiO_2$ and ZnO Water Suspensions, Water Research, 40(19), pp. 3527-3532 https://doi.org/10.1016/j.watres.2006.08.004
  2. Aitken, R. J., Chaudhry, M. Q., Boxall, A. B., and Hull, M. (2006). Manufacture and Use of Nanomaterials: Current Status in the UK and Global Trends, Occupational Medicine, 56(5), pp. 300-306. https://doi.org/10.1093/occmed/kql051
  3. Asharani, P. V., lianwu, Y., Gong, Z., and Valiyaveettil, S. (2011). Comparison of the Toxicity of Silver, Gold and Platinum Nanomaterials in Developing Zebrafish Embryos, Nanotoxicology, 5(1), pp. 43-54. https://doi.org/10.3109/17435390.2010.489207
  4. Asharani, P. V., Wu, Y. L., Gong, Z., and Valiyaveettil, S. (2008). Toxicity of Silver Nanoparticles in Zebrafish Models, Nanotechnology, 19(25), pp. 255102-255109. https://doi.org/10.1088/0957-4484/19/25/255102
  5. Asz, J., Asz, D., Moushey, R., Seigel, J., Mallory, S. B., and Foglia, R. P. (2006). Treatment of Toxic Epidermal Necrolysis in a Pediatric Patient with a Nanocrystalline Silver Dressing, Journal of Pediatric Surgery, 41(12), pp. e9-e12. https://doi.org/10.1016/j.jpedsurg.2006.08.043
  6. Bai, W., Zhang, Z., Tian, W., He, X., Ma, Y., Zhao, Y., and Chai, Z. (2010). Toxicity of Zinc Oxide Nanoparticles to Zebrafish Embryo: a Physicochemical Study of Toxicity Mechanism, Journal of Nanoparticle Research, 12(5), pp. 1645-1654. https://doi.org/10.1007/s11051-009-9740-9
  7. Bar-Ilan, O., Albrecht, R. M., Fako, V. E., and Furgeson, D. Y. (2009). Toxicity Assessments of Multisized Gold and Silver Nanoparticles in Zebrafish Embryos, Small, 5(16), pp. 1897-1910. https://doi.org/10.1002/smll.200801716
  8. Bar-Ilan, O., Louis, K. M., Yang, S. P., Pedersen, J. A., Hamers, R. J ., Peterson, R. E., and Heideman, W. (2012). Titanium Dioxide Nanoparticles Produce Phototoxicity in the Developing Zebrafish, Nanotoxicology, 6(6), pp. 670-679. https://doi.org/10.3109/17435390.2011.604438
  9. Browning, L. M., Lee, K. J., Huang, T., Nallathamby, P. D., Lowman, J. E., and Xu, X.-H. N. (2009). Random Walk of Single Gold Nanoparticles in Zebrafish Embryos Leading to Stochastic Toxic Effects on Embryonic Developments, Nanoscale, 1(1), pp. 138-152. https://doi.org/10.1039/b9nr00053d
  10. Chen, T.-H., Lin, C.-Y., and Tseng, M.-C. (2011). Behavioral Effects of Titanium Dioxide Nanoparticles on Larval Zebrafish (Danio rerio), Marine Pollution Bulletin, 63(5-12), pp. 303-308. https://doi.org/10.1016/j.marpolbul.2011.04.017
  11. Chen, J., and Poon, C. (2009). Photocatalytic Construction and Building Materials: From Fundamentals to Applications, Building and Environment, 44(9), pp. 1899-1906. https://doi.org/10.1016/j.buildenv.2009.01.002
  12. Chen, X., and Schluesener, H. J. (2008). Nanosilver: a Nanoproduct in Medical Application, Toxicology Letter, 176(1), pp. 1-12. https://doi.org/10.1016/j.toxlet.2007.10.004
  13. Cheng, D., Yang, J., and Zhao, Y. (2004). Antibacterial Materials of Silver Nanoparticles Applications in Medical Appliances and Appliances for Daily Use, Chinese Medical Equipment Journal, 4, pp. 26-32.
  14. Cohen, M. S., Stern, J. N., Vanni, A. J., Kelley, R. S., Baumgart, E., Field, D., Libertino, J. A., and Summerhayes, I. C. (2007). In Vitro Analysis of Nanocrystalline Silver-Coated Surgical Mesh, Surgical Infections, 8(3), pp. 397-403. https://doi.org/10.1089/sur.2006.032
  15. Colvin, V. L. (2003). The Potential Environmental Impact of Engineered Nanomaterials, Nature Biotechnology, 21(10), pp. 1166-1170. https://doi.org/10.1038/nbt875
  16. Cowart, D. A., Guida, S. M., Shah, S. I., and Marsh, A. G. (2011). Effects of Ag Nanoparticles on Survival and Oxygen Consumption of Zebra Fish Embryos, Danio rerio, Journal of Environmental Science and Health, Part A, 46(10), pp. 1122-1128. https://doi.org/10.1080/10934529.2011.590726
  17. Daniel, M. C., and Astruc, D. (2004). Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chemical Reviews, 104(1), pp. 293-346. https://doi.org/10.1021/cr030698+
  18. Dunford, R., Salinaro, A., Cai, L., Serpone, N., Horikoshi, S., Hidaka, H., and Knowland, J. (1997). Chemical Oxidation and DNA Damage Catalysed by Inorganic Sunscreen Ingredients, FEBS (Federation of European Biochemical Societies) Letters, 418(1-2), pp. 87-90. https://doi.org/10.1016/S0014-5793(97)01356-2
  19. Embry, M. R., Belanger, S. E., Braunbeckc, T. A., Galay- Burgosd, M., Haldere, M., Hintonf, D. E., Leonardg, M. A., Lillicraph, A., Norberg-Kingi, T., and Whale, G. (2010). The Fish Embryo Toxicity Test as an Animal Alternative Method in Hazard and Risk Assessment and Scientific Research, Aquatic Toxicology, 97(2), pp. 79-87. https://doi.org/10.1016/j.aquatox.2009.12.008
  20. Environmental Protection Agency (2007). http://www.epa.gov/osa/nanotech.htm
  21. Federici, G., Shaw, B. J., and Handy, R. D. (2007). Toxicity of Titanium Dioxide Nanoparticles to Rainbow Trout (Oncorhynchus mykiss): Gill Injury, Oxidative Stress, and Other Physiological Effects, Aquatic Toxicology, 84(4), pp. 415-430. https://doi.org/10.1016/j.aquatox.2007.07.009
  22. Fent, K., Weisbrod, C. J., Wirth-Heller, A., and Pieles, U. (2010). Assessment of Uptake and Oxicity of Fluorescent Silica Nanoparticles in Zebrafish (Danio rerio) Early Life Stages, Aquatic Toxicology, 100(2), pp. 218-228. https://doi.org/10.1016/j.aquatox.2010.02.019
  23. Gao, J., Liang, G., Zhang, B., Kuang, Y., Zhang, X., and Xu, B. (2007). FePt@Cos2 Yolk-Shell Nanocrystals as a Potent Agent to Kill HeLa Cells, Journal of the American Chemical Society, 129(5), pp. 1428-1433. https://doi.org/10.1021/ja067785e
  24. George, S., Xia, T., Rallo, R., Zhao, Y., Ji, Z., Lin, S., Wang, X., Zhang, H., France, B., Schoenfeld, D., Damoiseaux, R., Liu, R., Lin, S., Bradley, K. A., Cohen, Y., and Nel, A. E. (2011). Use of a High-Throughput Screening Approach Coupled with In Vivo Zebrafish Embryo Screening to Develop Hazard Ranking for Engineered Nanomaterials, ACS Nano, 5(3), pp. 1805-1817. https://doi.org/10.1021/nn102734s
  25. Handley, D. A. (1989). Colloidal Gold: Principles, Methods and Applications, Hayat, M. A. (ed.), 1(1-2), Academic Press, New York, pp. 1-32, and References Therein.
  26. Harper, S. L., Carriere, J. L., Miller, J. M., Hutchison, J. E., Maddux, B. L. S., and Tanguay, R. L. (2011). Systematic Evaluation of Nanomaterial Toxicity: Utility of Standardized Materials and Rapid Assays, ACS Nano, 5(6), pp. 4688-4697. https://doi.org/10.1021/nn200546k
  27. Harper, S., Usenko, C., Hutchison, J. E., Maddux, B. L. S., and Tanguay, R. L. (2008). In Vivo Biodistribution and Toxicity Depends on Nanomaterial Composition, Size, Surface Functionalisation and Route of Exposure, Journal of Experimental Nanoscience, 3(3), pp. 195-206. https://doi.org/10.1080/17458080802378953
  28. Van Hoecke, K., Quik, J. T. K., Mankiewicz-Boczek, J., De Schamphelaere, K. A. C., Elsaesser, A., Van der Meeren, P., Barnes, C., McKerr, G., Howard C. V., Van De Meent, D., Rydzynski, K., Dawson, K. A., Salvati, A., Lesniak, A., Lynch, I., Silversmit, G., De Samber, B., Vincze, L., and Janssen C. R. (2009). Fate and Effects of CeO2 Nanoparticles in Aquatic Ecotoxicity Tests, Environmental Science & Technology, 43(12), pp. 4537-4546. https://doi.org/10.1021/es9002444
  29. Huff, T. B., Tong, L., Zhao, Y., Hansen, M. N., Cheng, J. X., and Wei, A. (2007). Hyperthermic Effects of Gold Nanorods on Tumor Cells, Nanomedicine, 2(1), pp. 125-132. https://doi.org/10.2217/17435889.2.1.125
  30. Ispas, C., Andreescu, D., Patel, A., Goia, D. V., Andreescu, S., and Wallace, K. N. (2009). Toxicity and Developmental Defects of Different Sizes and Shape Nickel Nanoparticles in Zebrafish, Environmental Science & Technology, 43(16), pp. 6349-6356. https://doi.org/10.1021/es9010543
  31. Jovanovic, B., Anastasova, L., Rowe, E. W., Zhang, Y., Clapp, A. R., and Palic, D. (2011a). Effects of Nanosized Titanium Dioxide on Innate Immune System of Fathead Minnow (Pimephales Promelas Rafinesque, 1820), Ecotoxicology and Environmental Safety, 74(4), pp. 675-683. https://doi.org/10.1016/j.ecoenv.2010.10.017
  32. Jovanovic, B., Ji, T., and Palic, D. (2011b). Gene Expression of Zebrafish Embryos Exposed to Titanium Dioxide Nanoparticles and Hydroxylated Fullerenes, Ecotoxicology and Environmental Safety, 74(6), pp. 1518-1525. https://doi.org/10.1016/j.ecoenv.2011.04.012
  33. Jin, R. C., Cao, Y. W., Mirkin, C. A., Kelly, K. L., Schatz, G. C., and Zheng, J. G. (2001). Photoinduced Conversion of Silver Nanospheres to Nanoprisms, Science 294(5548), pp. 1901-1903. https://doi.org/10.1126/science.1066541
  34. Kaida, T., Kobayashi, K., Adachi, M., and Suzuki, F. (2004). Optical Characteristics of Titanium Dioxide Interference Film and the Film Laminates with Oxides and Their Applications for Cosmetics, Journal of Cosmetic Science, 55(2), pp. 219-220.
  35. Kim, S. W., Lee, W.-M., Shin, Y.-J., and An, Y.-J. (2012). Ecotoxicity Studies of Photoactive Nanoparticles Exposed to Ultraviolet Light, Journal of Korean Society of Environmental Engineers, 34(1), pp. 63-71. [Korean Literature]
  36. Kim, J. S., Kuk, E., Yu, K. N., Kim, J.-H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C.-Y., Kim, Y.-K., Lee, Y.-S., and Jeong, D. H. (2007). Antimicrobial Effects of Silver Nanoparticles, Nanomedicine, 3(1), pp. 95-101. https://doi.org/10.1016/j.nano.2006.12.001
  37. King-Heiden, T. C., Wiecinski, P. N., Mangham, A. N., Metz, K. M., Nesbit, D., Pedersen, J. A., Hamers, R. J., Heideman, W., and Peterson, R. E. (2009). Quantum Dot Nanotoxicity Assessment Using the Zebrafish Embryo, Environmental Science & Technology, 43(5), pp. 1605-1611. https://doi.org/10.1021/es801925c
  38. Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., Mahendra, S., McLaughlin, M. J., and Lead, J. R. (2008). Nanomaterials in the Environment: Behavior, Fate, Bioavailability and Effects, Environmental Toxicology and Chemistry, 27(9), pp. 1825-1851. https://doi.org/10.1897/08-090.1
  39. Kyriacou, S., Brownlow, W., and Xu, X.-H. N. (2004). Using Nanoparticle Optics Assay for Direct Observation of Function of Antimicrobial Agents in Single Live Bacterial Cells, Biochemistry, 2004, 43(1), pp. 140-147. https://doi.org/10.1021/bi0351110
  40. Laban, G., Nies, L., Turco, R., Bickham, J., and Sepúlveda, M. (2010). The Effects of Silver Nanoparticles on Fathead Minnow (Pimephales promelas) Embryos, Ecotoxicology, 19(1), pp. 185-195. https://doi.org/10.1007/s10646-009-0404-4
  41. Langea, M., Gebauera, W., Markla, J., and Nagel, R. (1995). Comparison of testing acute Toxicity on Embryo of Zebrafish, Brachydanio rerio and RTG-2 Cytotoxicity as Possible Alternatives to the Acute Fish Test, Chemosphere, 30(11), pp. 2087-2102. https://doi.org/10.1016/0045-6535(95)00088-P
  42. Lansdown, A. B. G. (2006). Silver in Health care: Antimicrobial Effects and Safety in Use, Biofunctional Textiles and the Skin; Current Problems in Dermatology, Hipler U.-E. and Elsner P. (eds.), (33), Karger Publishers, Basel, Switzerland, pp. 17-34.
  43. Lee, W.-M., Ha, S.-W., Yang, C.-Y., Lee, J.-K., and An, Y.-J. (2011). Effect of Fluorescent Silica Nanoparticles in Embryo and Larva of Oryzias latipes: Sonic Effect in Nanoparticle Dispersion, Chemosphere, 82(3), pp. 451-459. https://doi.org/10.1016/j.chemosphere.2010.09.055
  44. Lee, W.-M., and An, Y.-J. (2010). Research Trends of Ecotoxicity of Nanoparticles in Water Environment, Journal of Korean Society on Water Quality, 26(4), pp. 566-573. [Korean Literature]
  45. Lee, K. J., Nallathamby, P. D., Browning, L. M., Osgood, C. J., and Xu, X.-H. N. (2007a). In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos, ACS Nano, 1(2), pp. 133-143. https://doi.org/10.1021/nn700048y
  46. Lee, H. Y., Park, H. K., Lee, W. M., Kim, K., and Park, S. B. (2007b). A Practical Procedure for Producing Silver Nanocoated Fabric and Its Antibacterial Evaluation for Biomedical Applications, Chemical Communications, 28, pp. 2959-2961.
  47. Li, H., Zhou, Q., Wu, Y., Fu, J., Wang, T., and Jiang, G. (2009). Effects of Waterborne Nano-Iron on Medaka (Oryzias latipes): Antioxidant Enzymatic Activity, Lipid Peroxidation and Histopathology, Ecotoxicology and Environmental Safety, 72(3), pp. 684-692. https://doi.org/10.1016/j.ecoenv.2008.09.027
  48. Luft, J. R., Furlani, N. M., NeMoyer, R. E., Penna, E. J., Wolfley, J. R., Snell, M. E., Potter, S. A., and Snell, E. H. (2010). Crystal Cookery - Using High-Throughput Technologies and the Grocery Store as a Teaching Tool, Journal of Applied Crystallography, 43(5-2), pp. 1189-1207.
  49. Melquiades, F. L., Ferreira, D. D., Appoloni, C. R., Lopes, F., Lonni, A. G., Oliveira, F. M., and Duarte, J. C. (2008). Titanium Dioxide Determination in Sunscreen by Energy Dispersive X-Ray Fluorescence Methodology, Analytica Chimica Acta, 613(2), pp. 135-143. https://doi.org/10.1016/j.aca.2008.02.058
  50. Mueller, N. C. and Nowack, B. (2008). Exposure Modeling of Engineered Nanoparticles in the Environment, Environmental Science & Technology, 42(12), pp. 4447-4453. https://doi.org/10.1021/es7029637
  51. Nam, S.-H. and An, Y.-J. (2012). Research Trend of Aquatic Ecotoxicity of Gold Nanoparticles and Gold Ions, Journal of Korean Society on Water Environment, 28(2), pp. 313-319. [Korean Literature]
  52. Ortlieb, M. (2010). White Giant or White Dwarf?: Particle Size Distribution Measurements of $TiO_2,$ G.I.T. Laboratory Journal Europe, 14(9-10), pp. 42-43.
  53. Paterson, G., Ataria, J. M., Hoque, M. E., Burns, D. C., and Metcalfe, C. D. (2011). The Toxicity of Titanium Dioxide Nanopowder to Early Life Stages of the Japanese Medaka (Oryzias latipes), Chemosphere, 82(7), pp. 1002-1009. https://doi.org/10.1016/j.chemosphere.2010.10.068
  54. Pitkethly, M. J. (2004). Nanomaterials - the Driving Force, Materials Today, 7(12), pp. 20-29. https://doi.org/10.1016/S1369-7021(04)00627-3
  55. Scholz, S., Fischer, S., Gündel, U., Küster, E., Luckenbach T. and Voelker, D. (2008). The Zebrafish Embryo Model in Environmental Risk Assessment-Applications beyond Acute Toxicity Testing, Environmental Science and Pollution Research, 15(5), pp. 394-404. https://doi.org/10.1007/s11356-008-0018-z
  56. Sun, Y. G., Mayers, B., and Xia, Y. N. (2003). Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process, Nano Letters, 3(5), pp. 675-679. https://doi.org/10.1021/nl034140t
  57. Sun, Y., and Xia, Y. (2002). Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science, 298(5601), pp. 2176-2179. https://doi.org/10.1126/science.1077229
  58. Truong, L., Moody, I., Stankus, D., Nason, J., Lonergan, M., and Tanguay, R. (2011). Differential Stability of Lead Sulfide Nanoparticles Influences Biological Responses in Embryonic Zebrafish, Archives of Toxicology, 85(7), pp. 787-798. https://doi.org/10.1007/s00204-010-0627-4
  59. Truong, L., Saili, K. S., Miller, J. M., Hutchison, J. E., and Tanguay, R. L. (2012). Persistent Adult Zebrafish Behavioral Deficits Results from Acute Embryonic Exposure to Gold Nanoparticles, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 155(2), pp. 269-274. https://doi.org/10.1016/j.cbpc.2011.09.006
  60. Wamer, W. G., Yin, J. J., and Wei, R. R. (1997). Oxidative Damage to Nucleic Acids Photosensitized by Titanium Dioxide, Free Radical Biology and Medicine, 23(6), pp. 851-858. https://doi.org/10.1016/S0891-5849(97)00068-3
  61. Wang, Z. L. (2004) Zinc Oxide Nanostructures: Growth, Properties and Applications, Journal of Physics: Condensed Matter, 16(25), pp. 829-858. https://doi.org/10.1088/0953-8984/16/25/R01
  62. Wu, Y., Zhou, Q., Li, H., Liu, W., Wang, T., and Jiang, G. (2010). Effects of Silver Nanoparticles on the Development and Histopathology Biomarkers of Japanese Medaka (Oryzias latipes) Using the Partial-Life Test, Aquatic Toxicology, 100(2), pp. 160-167. https://doi.org/10.1016/j.aquatox.2009.11.014
  63. Xia, T., Zhao, Y., Sager, T., George, S., Pokhrel, S., Li, N., Schoenfeld, D., Meng, H., Lin, S., Wang, X., Wang, M., Ji, Z., Zink, J. I., Madler, L., Castranova, V., Lin, S., and Nel, A. E. (2011). Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos, ACS Nano, 5(2), pp. 1223-1235. https://doi.org/10.1021/nn1028482
  64. Xu, X. H. N., Brownlow, W. J., Kyriacou, S. V., Wan, Q., and Viola, J. J. (2004). Real-Time Probing of Membrane Transport in Living Microbial Cells Using Single Nanoparticle Optics and Living Cell Imaging, Biochemistry, 43(32), pp. 10400-10413. https://doi.org/10.1021/bi036231a
  65. Xu, X. H. N., Chen, J., Jeffers, R. B., and Kyriacou, S. V. (2002). Direct Measurement of Sizes and Dynamics of Single Living Membrane Transporters Using Nano-Optics, Nano Letters, 2(3), pp. 175-182. https://doi.org/10.1021/nl015682i
  66. Yeo, M.-K., and Kang, M. (2008). Effects of Nanometer Sized Silver Materials on Biological Toxicity During Zebrafish Embryogenesis, Korean Chemical Society, 29(6), pp. 1179-1184. https://doi.org/10.5012/bkcs.2008.29.6.1179
  67. Yeo, M.-K., and Kang, M. (2009). Effects of CuxTiOy Nanometer Particles on Biological Toxicity During Zebrafish Embryo Genesis, Korean Journal of Chemical Engineering, 26(3), pp. 711-718. https://doi.org/10.1007/s11814-009-0119-5
  68. Yeo, M.-K., and Kim, H.-E. (2010). Gene Expression in Zebrafish Embryos Following Exposure to $TiO_2$ Nanoparticles, Molecular & Cellular Toxicology, 6(1), pp. 97-104. https://doi.org/10.1007/s13273-010-0013-6
  69. Zhu, X., Wang, J., Zhang, X., Chang, Y., and Chen, Y. (2009). The Impact of ZnO Nanoparticle Aggregates on the Embryonic Development of Zebrafish (Danio rerio), Nanotechnology, 20(19), pp. 195103-195103. https://doi.org/10.1088/0957-4484/20/19/195103
  70. Zhu, X., Zhu, L., Duan, Z., Qi, R., Li, Y., and Lang, Y. (2008). Comparative Toxicity of Several Metal Oxide Nanoparticle Aqueous Suspensions to Zebrafish (Danio rerio) Early Developmental Stage, Journal of Environmental Science and Health, Part A, 43(3), pp. 278-284. https://doi.org/10.1080/10934520701792779