DOI QR코드

DOI QR Code

Arsenic removal from artificial arsenic water using CaAl-monosulfate and CaAl-ettringite

CaAl-monosulfate와 CaAl-ettringite를 이용한 인공비소폐수의 비소 제거 연구

  • 심재호 (한양대학교 건설환경공학과) ;
  • 김기백 (한양대학교 건설환경공학과) ;
  • 최원호 (한양대학교 건설환경공학과) ;
  • 박주양 (한양대학교 건설환경공학과)
  • Published : 2012.02.15

Abstract

The objective of this study is to remove arsenate from artificially contaminated wastewater using CaAl-ettringite and CaAl-monosulfate which were synthesized in laboratory. The study was carried on the basis of solidification/stabilization of waste using cement. Monosulfate and ettringite are constituents of cement paste. The CaAl-ettringite has a chemical formula of $Ca_6Al_2O_6(SO_4)_3{\cdot}32H_2O$ and has a needle like morphology. Whereas CaAl-monosulfate $Ca_4Al_2O_6(SO_4){\cdot}12H_2O$ has layered double hydroxide structure (LDH) in which the mainlayer consists of Ca and Al and S as interlayer. Ettringite and monosulfate were synthesized by reaction of tricalcium aluminate and gypsum and hydrating this mixture at elevated temperature. The synthesized mineral were characterized by PXRD and FESEM to ensure purity. It was found that concentrations of As(V) in contaminated water were reduced from initial concentration of 1.335 mmol/L to 0.054 mmol/L and 0.300 mmol/L by CaAl-monosulfate and CaAl-ettringite respectively. The post experimental results of PXRD and FESEM analysis indicate that arsenate removal was by ion exchange.

시멘트를 이용한 고형화/안정화의 여러 기작 중 시멘트 페이스트의 구성물인 monosulfate와 ettringite에 초점을 맞춰 이들을 각 각 합성하고 인공비소폐수에서의 비소 제거 실험을 실시했다. 소성과 중탕 과정을 거쳐 $Ca^{2+}$$Al^{3+}$이 mainlayer를 이루고 있으며, $SO_4^{2-}$가 interlayer에 삽입되어 있는 CaAl-monosulfate와 $Ca^{2+}$$Al^{3+}$가 column형태의 구조로, $SO_4^{2-}$가 channel형태로 구성되어 있는 CaAl-ettringite를 합성했다. 순수하게 합성된 시료로 1.335 mmol/L As(V) 농도의 수용액을 각각 0.054 mmol/L As(V)와 0.300 mmol/L As(V)까지 감소시켰다. PXRD와 FESEM을 이용하여 반응 전 후의 시료 결정 구조와 상 분석을 행함으로써 이온교환에 의해 인공비소폐수의 비소가 제거 된 것을 알 수 있었다.

Keywords

References

  1. Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A. H., Imam, M. B., Kgan, A. A. and Sracek, O. (2004) Arsenic enrichment in groundwater of the alluvial aquifers in Bangledesh: an overview. Appl. Geochem., 19, pp.181-200 https://doi.org/10.1016/j.apgeochem.2003.09.006
  2. Balonis, M. and Glasser, F. P. (2009) The density of cement phases, Cem. Concr. Res., 39(9), pp.733-739. https://doi.org/10.1016/j.cemconres.2009.06.005
  3. Baur, I., Keller P., Mavrocordatos D., Wehrli, B., Johnson, C. A. (2004) Dissolution-precipitation behaviour of ettringite, monosulfate, and calcium silicate hydrate, Cem. Concr. Res., 34(2), pp.341-348. https://doi.org/10.1016/j.cemconres.2003.08.016
  4. Cappuyns, V., Van Herreweghe, S., Swennen. R., Ottenburgs, R. and Deckers, J. (2002) Arsenic pollution at the industrial site of Reppel-Bocholt (north Belgium), Sci. Tot. Environ., 295, pp.217-240 https://doi.org/10.1016/S0048-9697(02)00096-7
  5. Cavani, F., Trifiro, F. and Vaccari, A. (1991) Hydrotalcite-type anionic clays, Preparation, properties and applications, Catal. Today, 11(2), pp.173-301. https://doi.org/10.1016/0920-5861(91)80068-K
  6. Charlet, L., Ansari, A. A., Lespagnol, G. and Musso, M. (2001) Risk of arseic transfer to a semi-confined aquifer and the effect of water level fluctuation in North Mortagne, france at a former industrial site, Sci. Tot. Environ., 277, pp.133-147 https://doi.org/10.1016/S0048-9697(00)00869-X
  7. Christensen, A. N., Jensen, T. R. and Hanson, J. C. (2004) Formation of ettringite, $Ca_{6}Al_{2}(SO_{4})_{3}(OH)_{12}{\cdot}26H_{2}O$, AFt, and monosulfate, $Ca_{4}Al_{4}O_{6}(SO_{4}){\cdot}_{14}H_{2}O$, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide −calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction, J. Solid State Chem., 177(6), pp.1944-1951. https://doi.org/10.1016/j.jssc.2003.12.030
  8. Clark, B. A., and Brown, P. W. (1999) The formation of calcium sulfoaluminate hydrate compounds: Part I, J. Am. Ceram. Soc., 82(10), pp.2900-2905.
  9. Francesconi, K., Visoottiviseth P., Sridokchn W., and Goessler W., (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic contaminated soil, The Sci. of the Total Environ., 284, pp.27-35 https://doi.org/10.1016/S0048-9697(01)00854-3
  10. Gao, S., and Burau, R. G. (1997) Environmental factors affecting rate of arsine evolution from and mineralization of arsenicals in soil, J. Environ. Qual., 26, pp.753-763
  11. Haron, M. J., Wan Yunus, W. M., Yong, N. L., and Tokunaga, S., (1999) Sorption of arsenate and arsenite anions by iron(III)-poly (hydroxamic acid) complex, Chemosphere, 39, pp.2459-2466 https://doi.org/10.1016/S0045-6535(99)00155-1
  12. Juillot, F., Ildelfonse, Ph., Morin, G., Calas, G., de Kersabies, A. M. and Benedetti, M. (1999) Remobilization of arsenic from buried wastes at an industrial site: mineralogical and geochemical control. Appl. Geochem., 14. pp.1031-1048 https://doi.org/10.1016/S0883-2927(99)00009-8
  13. Kang, W. H., Kim, E. I. and Park, J. Y. (2007) Fluoride removal capacity of cement paste, Desalination, 202(1-3), pp.38-44. https://doi.org/10.1016/j.desal.2005.12.036
  14. Matschei, T., Lothenbach, B., Glasser, F. P., (2007) The AFM phase in Portland cement, Cement and Concrete Research, 37, pp.118-130 https://doi.org/10.1016/j.cemconres.2006.10.010
  15. Merlini, M., Artioli, G., Cerulli, T., Cella, F. and Bravo, A., (2008) Tricalcium aluminate hydration in additivated systems. A crystallographic study by SR-XRPD, Cement and Concrete Research, 38, pp.477-486 https://doi.org/10.1016/j.cemconres.2007.11.011
  16. Minard, H., Garrault, S., Regnaud, L. and Nonat, A. (2007) Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum, Cem. Concr. Res., 37(10), pp.1418-1426. https://doi.org/10.1016/j.cemconres.2007.06.001
  17. Moore, A. E. and Taylor, H. F. W. (1970) Crystal structure of ettringite, Acta Crystallogr B Struct. Sci., 26, pp.386-393 https://doi.org/10.1107/S0567740870002443
  18. Mosalamy, F. H., Shater, M. A., El-Didamony, H. and El-Sheikh, R. (1984) Hydration mechanism of tricalcium aluminate with lime at 1:1 mole ratio at low water/solid ratio and in suspension, Thermochim. Acta, 74(1-3), pp.123-129. https://doi.org/10.1016/0040-6031(84)80012-X
  19. Palmer, S. J., Frost, R. L. and Nguyen, T. (2009) Hydrotalcites and their role in coordination of anions in Bayer liquors: Anion binding in layered double hydroxides, Coord. Chem. Rev., 253(1-2), pp.250-267. https://doi.org/10.1016/j.ccr.2008.01.012
  20. Park, J. Y., Byun, H. J., Choi, W. H. and Kang W. H. (2008) Cement paste column for simultaneous removal of fluoride, phosphate, and nitrate in acidic wastewater, Chemosphere, 70(8), pp.1429-1437. https://doi.org/10.1016/j.chemosphere.2007.09.012
  21. Pollmann, H. (1989) Solid solution in the system $3CaO{\cdot}Al_{2}O_{3}{\cdot}CaSO_{4}{\cdot}aq-3CaO{\cdot}Al_{2}O_{3}{\cdot}Ca(OH)_{2}-aq-H_{2}O $ at $25^{\circ}C$, $45^{\circ}C$, $60^{\circ}C$, Neuse Jahrb. Mineral. Abhandl, 161, pp.27-40
  22. Rives, V. (2002) Characterisation of layered double hydroxides and their decomposition products, Mater. Chem. Phys., 75(1-3), pp.19-25. https://doi.org/10.1016/S0254-0584(02)00024-X
  23. Sadiq, M., Zaidi, T. H. and Mian, A. A. (1983) Environmental behavior of arsenic in soils: theoretical, Water, Air, and Soil Pollution, 20(4), pp.369-377
  24. Satish C. B. Myneni, Samuel J. Traina, Terry J. Logan, Glenn A. Wayshunas (1997) Oxyanion behavior in alkaline environments: sorption and desorption of arsenate in ettringite, Environmental Science & Technology, 31(6), pp.1761-1768 https://doi.org/10.1021/es9607594
  25. Su, C., and Puls, R. W. (2001) Arsenate and arsenite removal by zerovalent iron : Kinetics, redox transformation, and implications for in situ groundwater remediation, Environ., Sci. Technol., 35, pp.1487-1492 https://doi.org/10.1021/es001607i
  26. Tu, C., and Ma, L. Q. (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake, J. Environ. Qual., 31, pp.641-647 https://doi.org/10.2134/jeq2002.0641