Preparation of Monodispersed Polystyrene Latex Spheres (PLS) as Artificial Dusts

인공 먼지로서 단분산 Polystyrene Latex Spheres (PLS)의 제조

  • Kim, Ok Hee (Center for Functional Nano Fine Chemicals and School of Applied Chemical Engineering, Chonnam National University) ;
  • Ryu, Dong Wan (The Research Institute for Catalysis, Chonnam National University) ;
  • Sung, Dong Chan (Dong Yang Chemical Co. Ltd.) ;
  • Moon, Hee (The Research Institute for Catalysis, Chonnam National University)
  • 김옥희 (전남대학교 공과대학 신화학소재공학과) ;
  • 류동완 (전남대학교 촉매연구소) ;
  • 성동찬 ((주)동양화학) ;
  • 문희 (전남대학교 촉매연구소)
  • Published : 2012.02.10

Abstract

Polystyrene latex spheres (PLS) were prepared as artificial dusts by the emulsion polymerization with potassium persulfate (KPS) and sodium dodecyl sulfonate (SDS) as an initiator and a stabilizer, respectively. The reaction temperature and the concentration of the initiator and stabilizer were chosen as variables to control the PLS particle size. As temperature increased, the particle size decreased considerably. Furthermore, the PLS particle size and their size distributions can be controlled minutely by adjusting the concentrations of KPS and SDS. It is confirmed that the PLS prepared in this work is monodispersed with the coefficient of variance less than 7% and are in the range of 0.1~0.5 ${\mu}m$, which are good for using as artificial dusts.

potassium persulfate (KPS)와 sodium dodecyl sulfonate (SDS)를 각각 개시제와 안정제로 사용한 유화중합에 의하여 인공먼지로 사용할 수 있는 polystyrene latex spheres (PLS)를 제조하였다. PLS입자의 크기를 조절하기 위한 변수로 반응온도와 개시제 및 안정제의 농도가 선택되었다. 반응온도의 증가에 따라 입자의 크기는 작아졌으며, KPS와 SDS의 농도를 변화시켜 PLS 입자의 크기 및 분포를 매우 미세하게 조절할 수 있었다. 본 연구에서 제조된 PLS입자는 변동계수 (CV) 값이 7% 이하인 단분산이며, 0.1~0.5 ${\mu}m$ 범위에 있어 인조 먼지로 사용하기에 적합한 것으로 밝혀졌다.

Keywords

References

  1. C. H. Hung and W. W. F. Leung, Sep. Purif. Technol., 79, 33 (2011).
  2. A. Joubert and J. C. Laborde, Chem. Eng. J., 166, 616 (2011). https://doi.org/10.1016/j.cej.2010.11.033
  3. Liuliu Du and S. Batterman, Build. Environ., 46, 2303 (2011). https://doi.org/10.1016/j.buildenv.2011.05.012
  4. G. Geschwind and D. Stanley, J. Aerosol. Sci., 27, 5635 (1996).
  5. R. Weper, Filtr. Sep., 31, 781 (1994). https://doi.org/10.1016/0015-1882(94)80522-9
  6. K. P. Lok and C. K. Ober, Can. J. Chem., 63, 209 (1985). https://doi.org/10.1139/v85-033
  7. Y. Yin and Y. Xia, Adv. Mater., 13, 267 (2001). https://doi.org/10.1002/1521-4095(200102)13:4<267::AID-ADMA267>3.0.CO;2-9
  8. F. Caruso, Adv. Mater., 13, 11 (2001). https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
  9. X. C. Xiao, T. Y. Chu, W. M. Chen, S. Wang, and R. Xie, Langmuir, 20, 5247 (2004). https://doi.org/10.1021/la036230j
  10. H. Kawaguchi, Prog. Polym. Sci., 25, 1171 (2000). https://doi.org/10.1016/S0079-6700(00)00024-1
  11. O. W. Webster, Science, 251, 887 (1991). https://doi.org/10.1126/science.251.4996.887
  12. E. B. Mock, H. D. Bruyn, B. S. Hawkett, R. G. Gilbert, and C. F. Zukoski, Langmuir, 22, 4037 (2006). https://doi.org/10.1021/la060003a
  13. U. Akiva and S. Margel, J. Colloid Interface. Sci., 288, 61 (2005). https://doi.org/10.1016/j.jcis.2005.02.077
  14. A. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-Lami, and E. Duguet, J. Mater. Chem., 15, 3745 (2005). https://doi.org/10.1039/b505099e
  15. G. Geschwind, S. D. Duke, and D. Milholland, J. Aerosol. Sci., 27, 635 (1996). https://doi.org/10.1016/0021-8502(96)86889-3
  16. J. V. Dawkins, Aqueous Suspension Polymerization in Comprehensive Polymer Science, S. S. Allen, and J. G. Bevington, Ed., Pergamon Press, Oxford (1989).
  17. C. S. Chen, Prog. Polym. Sci., 31, 443 (2003).
  18. S. Shin and M. S. El-Aaser, J. Polym. Sci., 29, 857 (1992)
  19. J. Zhang, Z. Chen, Z. Wang, W. Zhang, and N. Ming, Mater. Lett., 57, 4466 (2003). https://doi.org/10.1016/S0167-577X(03)00344-6
  20. D. Qiu, T. Cosgrove, and A. M. Howe, Macromol. Chem. Phys., 206, 2233 (2005). https://doi.org/10.1002/macp.200500306
  21. DOE TECHNICAL STANDARD, Specification for HEPA Filters Used by DOE Contractors, DOE-STD-3020-2005.
  22. R. P. N. Veregin, P. G. Odell, L. M. Michalak, and M. K. Georges, Macromolecules, 29, 2746 (1996). https://doi.org/10.1021/ma951471m
  23. S. E. Shim, Y. Cha, J. Byun, and S. Shoe, J. Appl. Polym. Sci., 71, 2259 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990328)71:13<2259::AID-APP17>3.0.CO;2-5
  24. C. Barner-Kowollik and T. P. Davis, Macromol. Theory Simul., 10, 255 (2001). https://doi.org/10.1002/1521-3919(20010401)10:4<255::AID-MATS255>3.0.CO;2-V
  25. C. Chren and C. Lee, J. Polym. Sci., 40, 1608 (2002). https://doi.org/10.1002/pola.10243
  26. B. Jacobi, Angew, Chem., 64, 539 (1952). https://doi.org/10.1002/ange.19520641907
  27. W. J. Priest, J. Phys. Chem., 56, 1077 (1952). https://doi.org/10.1021/j150501a010
  28. W. D. Harkins, J. Am. Chem. Soc., 69, 1428 (1947). https://doi.org/10.1021/ja01198a053
  29. Li, Y and S. M. Ghoreishi, Langmuir, 16, 3093 (2000). https://doi.org/10.1021/la9910172
  30. J. Liu and C. H. Chew, Langmuir, 13, 4988 (1997). https://doi.org/10.1021/la970252m
  31. T. G. Fox and J. Flory, J. Appl. Phys., 21, 581 (1950). https://doi.org/10.1063/1.1699711
  32. T. Tanrisever and O. Okay, J. Appl. Polym. Sci., 61, 485 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960718)61:3<485::AID-APP11>3.0.CO;2-0
  33. M. Weiha and N. Frank Jones, Polym. Bull., 40, 749 (1998). https://doi.org/10.1007/s002890050318
  34. G. Xie and Q, Zhang, J. Appl. Polym. Sci., 87, 1733 (2003). https://doi.org/10.1002/app.11483