Browse > Article

Preparation of Monodispersed Polystyrene Latex Spheres (PLS) as Artificial Dusts  

Kim, Ok Hee (Center for Functional Nano Fine Chemicals and School of Applied Chemical Engineering, Chonnam National University)
Ryu, Dong Wan (The Research Institute for Catalysis, Chonnam National University)
Sung, Dong Chan (Dong Yang Chemical Co. Ltd.)
Moon, Hee (The Research Institute for Catalysis, Chonnam National University)
Publication Information
Applied Chemistry for Engineering / v.23, no.1, 2012 , pp. 59-64 More about this Journal
Abstract
Polystyrene latex spheres (PLS) were prepared as artificial dusts by the emulsion polymerization with potassium persulfate (KPS) and sodium dodecyl sulfonate (SDS) as an initiator and a stabilizer, respectively. The reaction temperature and the concentration of the initiator and stabilizer were chosen as variables to control the PLS particle size. As temperature increased, the particle size decreased considerably. Furthermore, the PLS particle size and their size distributions can be controlled minutely by adjusting the concentrations of KPS and SDS. It is confirmed that the PLS prepared in this work is monodispersed with the coefficient of variance less than 7% and are in the range of 0.1~0.5 ${\mu}m$, which are good for using as artificial dusts.
Keywords
polystyrene latex spheres; artificial dusts; emulsion polymerization; monodispersed;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. H. Hung and W. W. F. Leung, Sep. Purif. Technol., 79, 33 (2011).
2 A. Joubert and J. C. Laborde, Chem. Eng. J., 166, 616 (2011).   DOI
3 Liuliu Du and S. Batterman, Build. Environ., 46, 2303 (2011).   DOI
4 G. Geschwind and D. Stanley, J. Aerosol. Sci., 27, 5635 (1996).
5 R. Weper, Filtr. Sep., 31, 781 (1994).   DOI
6 K. P. Lok and C. K. Ober, Can. J. Chem., 63, 209 (1985).   DOI
7 Y. Yin and Y. Xia, Adv. Mater., 13, 267 (2001).   DOI
8 F. Caruso, Adv. Mater., 13, 11 (2001).   DOI
9 X. C. Xiao, T. Y. Chu, W. M. Chen, S. Wang, and R. Xie, Langmuir, 20, 5247 (2004).   DOI
10 H. Kawaguchi, Prog. Polym. Sci., 25, 1171 (2000).   DOI
11 O. W. Webster, Science, 251, 887 (1991).   DOI
12 E. B. Mock, H. D. Bruyn, B. S. Hawkett, R. G. Gilbert, and C. F. Zukoski, Langmuir, 22, 4037 (2006).   DOI
13 U. Akiva and S. Margel, J. Colloid Interface. Sci., 288, 61 (2005).   DOI
14 A. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-Lami, and E. Duguet, J. Mater. Chem., 15, 3745 (2005).   DOI
15 G. Geschwind, S. D. Duke, and D. Milholland, J. Aerosol. Sci., 27, 635 (1996).   DOI
16 J. V. Dawkins, Aqueous Suspension Polymerization in Comprehensive Polymer Science, S. S. Allen, and J. G. Bevington, Ed., Pergamon Press, Oxford (1989).
17 C. S. Chen, Prog. Polym. Sci., 31, 443 (2003).
18 J. Liu and C. H. Chew, Langmuir, 13, 4988 (1997).   DOI
19 S. Shin and M. S. El-Aaser, J. Polym. Sci., 29, 857 (1992)
20 J. Zhang, Z. Chen, Z. Wang, W. Zhang, and N. Ming, Mater. Lett., 57, 4466 (2003).   DOI   ScienceOn
21 D. Qiu, T. Cosgrove, and A. M. Howe, Macromol. Chem. Phys., 206, 2233 (2005).   DOI   ScienceOn
22 DOE TECHNICAL STANDARD, Specification for HEPA Filters Used by DOE Contractors, DOE-STD-3020-2005.
23 R. P. N. Veregin, P. G. Odell, L. M. Michalak, and M. K. Georges, Macromolecules, 29, 2746 (1996).   DOI   ScienceOn
24 S. E. Shim, Y. Cha, J. Byun, and S. Shoe, J. Appl. Polym. Sci., 71, 2259 (1999).   DOI   ScienceOn
25 C. Barner-Kowollik and T. P. Davis, Macromol. Theory Simul., 10, 255 (2001).   DOI   ScienceOn
26 C. Chren and C. Lee, J. Polym. Sci., 40, 1608 (2002).   DOI
27 B. Jacobi, Angew, Chem., 64, 539 (1952).   DOI
28 W. J. Priest, J. Phys. Chem., 56, 1077 (1952).   DOI
29 W. D. Harkins, J. Am. Chem. Soc., 69, 1428 (1947).   DOI
30 Li, Y and S. M. Ghoreishi, Langmuir, 16, 3093 (2000).   DOI
31 G. Xie and Q, Zhang, J. Appl. Polym. Sci., 87, 1733 (2003).   DOI
32 T. G. Fox and J. Flory, J. Appl. Phys., 21, 581 (1950).   DOI
33 T. Tanrisever and O. Okay, J. Appl. Polym. Sci., 61, 485 (1996).   DOI
34 M. Weiha and N. Frank Jones, Polym. Bull., 40, 749 (1998).   DOI