DOI QR코드

DOI QR Code

A Study on Methanogenic Bacteria-Activated Leachate Recirculation Method for Enhancing Waste Stabilization and Landfill Gas Production from a Solid waste Landfill

매립가스 발생량 및 폐기물 안정화 촉진을 위한 메탄생성균 활성 침출수 재순환 공법에 관한 연구

  • Published : 2012.06.30

Abstract

The objective of this study was to assess the effects of methanogenic bacteria-activated leachate recirculation method for enhancing waste stabilization and landfill gas production from a solid waste landfill. To simulate a conventional landfill (Lys-A), a landfill recirculated only fresh leachate (Lys-B), and two landfills recirculated leachate after pretreating with ASBR (Lys-C and Lys-D), four lysimeters were operated over a period of 4 years. Lys-D was recirculated two times of pretreated leachate volume than that of Lys-C. In the case of the landfill recirculated only fresh leachate and the landfill recirculated leachate after pretreating with ASBR, methane productions were increased until about 600 days, but there were not effect of leachate recirculation for enhancing methane production after about 600 days. It was assumed that leachate recirculation into fewer biodegradable organic wastes had not effect to enhance landfill gas production. Lys-C and Lys-D showed the highest performance for enhancing cumulative methane yield as well as acceleration waste stabilization. In cumulative methane yield, Lys-C (35.51 mL $CH_4/g$ VS) and Lys-D (36.12 mL $CH_4/g$ VS) were much higher than Lys-A (28.37 mL $CH_4/g$ VS) and Lys-B (30.07 mL $CH_4/g$ VS). In case of between Lys-B and Lys-C with the same recirculation rate, COD concentration in Lys-C was more rapidly decreased compared with that in Lys-B. This was attributed to the presence of methanogenic bacteria as well as dilution of inhibitory substances by the methanogenic bacteria-activated leachate recirculation. Therefore, the landfill recirculated leachate after pretreating with ASBR was found to be the most appropriate operating techniques for enhancing waste stabilization and landfill gas production.

본 연구에서는 폐기물매립지에서 매립가스 및 폐기물 안정화 촉진을 위한 메탄생성균 활성 침출수 재순환 공법의 효과를 평가하였다. 기존 매립공법(Lys-A), 침출수 재순환 공법(Lys-B), ASBR 전처리 후 침출수 재순환 공법(Lys-C, Lys-D)을 묘사하기 위해 4개의 모의매립조를 만들어 4년 이상 운영하였다. Lys-D는 전처리된 침출수의 재순환 양을 Lys-C의 2배로 하였다. 침출수 재순환 공법과 ASBR 전처리 후 침출수 재순환 공법의 경우 600일까지 메탄발생량이 증가하였으나 600일 이후에는 침출수 재순환이 메탄발생량 증가에 미치는 영향은 거의 없는 것으로 나타났다. 이는 분해 가능한 유기물질이 부족할 경우 침출수의 재순환 효과가 없기 때문으로 판단된다. Lys-C와 Lys-D는 폐기물의 안정화촉진 뿐만 아니라 누적메탄수율도 가장 높은 것으로 나타났다. 누적메탄수율의 경우 Lys-C(35.51 mL $CH_4/g$ VS)와 Lys-D(36.12 mL $CH_4/g$ VS)는 Lys-A(28.37 mL $CH_4/g$ VS)와 Lys-B(30.07 mL $CH_4/g$ VS)보나 높게 나타났다. 침출수 재순환율이 동일한 Lys-B와 Lys-C의 경우 Lys-C의 COD 농도가 Lys-B보다 더욱 빠르게 감소하였다. 이는 메탄생성균 활성 침출수에 의해 저해물질의 희석뿐만 아니라 메탄생성균의 존재에 기인하는 것으로 사료된다. 따라서 ASBR 전처리 후 침출수 재순환 공법은 폐기물 안정화 및 매립가스 증대에 가장 적합한 것으로 판단된다.

Keywords

References

  1. Reinhart, D. R. and Townsend, T.G., Landfill bioreactor design and operation, Lewis publishers (1998).
  2. San, I. and Onay, T. T., "Impact of various leachate recirculation regimes on municipal solid waste degradation", Journal of Hazardous Materials, B87, pp. 259-271. (2001).
  3. Sponza, D. T. and Agdag, O. N., "Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors", Process Biochemistry, 39(12), pp. 2157-2165. (2004). https://doi.org/10.1016/j.procbio.2003.11.012
  4. 윤석표, 이남훈, "Bioreactor형 매립공법과 기존 매립공법의 경제성, 환경성 비교", 한국폐기물학회지, 22(7), pp. 676-684. (2005).
  5. 김혜진, 박진규, 정민교, 이남훈, "바이오매스 활용형 폐기물 매립지공법 개발을 위한 실험적 연구", 유기성자원학회지, 15(1), pp. 171-177. (2007).
  6. Reinhart, D. and Al-Yousfi, A. B., "The impact of leachate recirculation on municipal solid waste landfill operating characteristics", Water Science and Technology, 38(2), pp. 159-168. (1998). https://doi.org/10.1016/S0273-1223(98)00441-7
  7. Bae, J. H., Cho, K. W., Bum. B. S., Lee, S. J. and Yoon, B. H., "Effects of leachate recycle and anaerobic digester sludge recycle on the methane generation from solid waste", Water Science and Technology, 38(2), pp. 159-168. (1998). https://doi.org/10.1016/S0273-1223(98)00441-7
  8. Francois, V., Feuillade, G., Matejka, G., Lagier, T. and Skhiri, N., "Leachate recirculation effects on waste degradation: Study on columns", Waste Management, 27(9), pp. 1259-1272. (2007). https://doi.org/10.1016/j.wasman.2006.07.028
  9. Ledakowicz, S. and Kaczarek, K., "Laboratory simulation of anaerobic digestion of municipal solid waste", in ISWA 2002 world environmental congress, appropriate environmental and solid waste management and technologies for developing countries, pp. 1139-1146. (2002).
  10. Chugh, S., Clarke, W., Pullammanappalli, P. and Rudolph, V., "Effect of recirculated leachate volume on MSW degradation", Waste Management Research, 16(6), pp. 564-573. (1998). https://doi.org/10.1177/0734242X9801600607
  11. Price, G.A., Barlaz, M.A. and Hater, G.R., "Nitrogen management in bioreactor landfills", Waste management, 23(7), pp. 675-688. (2003). https://doi.org/10.1016/S0956-053X(03)00104-1
  12. Jun, D., Yongsheng, Z., Henry, R. K. and Mei, H., "Impacts of aeration and active sludge addition on leachate recirculation bioreactor", Journal of Hazardous Materials, 147(1-2), pp. 240-248. (2007). https://doi.org/10.1016/j.jhazmat.2007.01.001
  13. He, P. J., Qu, X., Shao, L. M., Li, G, J. and Lee, D. J., "Leachate pretreatment for enhancing organic matter conversion in landfill bioreactor", Journal of Hazardous Materials, 142(1-2), pp. 288-296. (2007). https://doi.org/10.1016/j.jhazmat.2006.08.017
  14. Lozecznik, S., Sparling, R., Oleszkiewicz, J. A., Clark, S. and VanGulck, J. F., "Leachate treatment before injection into a bioreactor landfill: Clogging potential reduction and benefits of using methanogenesis", Waste Management, 30(11), pp. 2030-2036. (2010). https://doi.org/10.1016/j.wasman.2010.04.024
  15. Benson, C.H., Barlaz, M.A., Lane, D.T. and Rawe, J.M., "Practice review of five bioreactor/recirculation landfills", Waste Management, 27(1), pp. 13-19. (2007). https://doi.org/10.1016/j.wasman.2006.04.005
  16. He, R., Shen, D. S, Wang, J. Q, He, Y. H and Zhu, Y. M., "Biological degradation of MSW in a methanogenic reactor using treated leachate recirculation", Process Biochemistry, 40(12), pp. 3660-3666. (2005). https://doi.org/10.1016/j.procbio.2005.02.022
  17. 배성진, 이경대, 심재휘, 권정안, 이동훈, "매립 폐기물 조성변화와 침출수 재순환이 매립가스 발생 및 침출수 수질변화에 미치는 영향", 한국폐기물자원순환학회지, 27(5), pp. 415-421. (2010).
  18. Lay, J. J., Li, Y. Y. and Noike, T., "The influence of pH and ammonia concentration on the methoane production in high-solids digestion processes", Water Environment Research, 70(5), pp. 1074-1083. (1998).
  19. Warith, M., "Bioreactor landfills: experimental and field results", Waste Management, 22(1), pp. 7-17. (2002). https://doi.org/10.1016/S0956-053X(01)00014-9
  20. McCarty, P. L. and Rittmann, B. E., Environmental biotechnology principles and applications, McGraw-Hill Science. (2000).
  21. Zouboulis, A. I., Loukidou, M. X. and Christodoulou, K., "Enzymatic treatment of sanitary landfill leachate", Chemosphere, 44(5), pp. 1103-1108. (2001). https://doi.org/10.1016/S0045-6535(00)00343-X