DOI QR코드

DOI QR Code

메주로부터 분리한 토착 Bacillus sp. BCNU 9028의 프로바이오틱스로서 이용 가능성

Probiotic Potential of Indigenous Bacillus sp. BCNU 9028 Isolated from Meju

  • Shin, Hwa-Jin (Department of Biology, Changwon National University) ;
  • Bang, Ji-Hun (Department of Biology, Changwon National University) ;
  • Choi, Hye-Jung (Department of Biology and interdisciplinary Program in Biotechnology, Changwon National University) ;
  • Kim, Dong-Wan (Department of Microbiology, Changwon National University) ;
  • Ahn, Cheol-Soo (Cho-A Pharm. Co, LTD.) ;
  • Jeong, Young-Kee (Department of Biotechnology, Dong-A University) ;
  • Joo, Woo-Hong (Department of Biology, Changwon National University)
  • 투고 : 2012.02.29
  • 심사 : 2012.05.17
  • 발행 : 2012.05.30

초록

포자형성균은 사람과 동물용의 프로바이오틱 제제로서 사용되어져 왔다. 포자형성균의 낮은 pH에 대한 안정성과 위내 생육저해 환경에 생존능은 프로바이오틱 제제로서 매력적이다. 본 연구는, 한국 전통 대두 발효 식품의 종균인 BCNU 9028균주를 메주로부터 분리하였다. 생리학적, 생화학적 특성과 16S 리보좀 DNA 염기서열 분석 결과 BCNU 9028균주는 $Bacillus$에 속하는 것을 확인하였다. $Bacillus$ sp. BCNU 9028은 pH 2.5에서 92%의 생존률을 보였으며, 0.3% 담즙산에서도 저항성을 나타냈다. 그리고, 식품 병원성균과의 응집정도와 자가결합능에 의해 $Bacillus$ sp. BCNU 9028는 $Listeria$ $monocytogenes$, $S.$ $aureus$$E.$ $coli$와 같은 식품 병원성균의 생물막형성과 부착을 저해할 수 있는 것을 확인하였다. BCNU 9028의 소수성 특성(63.3%)은 장관내 부착능이 우수할 것으로 나타났다. 특히, $Bacillus$ sp. BCNU 9028 균주는 그람양성 및 그람음성 병원성균 모두에 항균력을 갖는 것을 확인하였다. 이상의 결과로 $Bacillus$ sp. BCNU 9028균주가 프로바이오틱스로서 이용가능성이 있음을 제시하였다.

Spore-forming bacteria are being used as probiotic supplements for human and animal use, due to their low pH stability and ability to survive the gastric barrier. In this study, the BCNU 9028 strain was screened from meju, a Korean fermented soybean food starter. Biochemical and physiological characteristics, as well as 16S rDNA sequence analyses, indicate that this strain belongs to the genus $Bacillus$. $Bacillus$ sp. BCNU 9028 showed a 92% survivability at pH 2.5 and could also withstand 0.3% ox bile. Furthermore, it was postulated that $Bacillus$ sp. BCNU 9028 could prevent biofilm formation and adherence of food-borne pathogens such as $Listeria$ $monocytogenes$, $S.$ $aureus$ and $E.$ $coli$ on the basis of its autoaggregation and coaggregation capacity with food-borne pathogens. It was shown that BCNU 9028 has good abilities to adhere to the intestinal tract from its hydrophobic character (63.3%). The $Bacillus$ sp. BCNU 9028 strain especially elicited antibacterial activity against both Gram-positive and -negative pathogens. These findings suggested that the $Bacillus$ sp. BCNU 9028 strain could be used as a potential probiotic.

키워드

참고문헌

  1. Ananthaya, S. and Thirabunyanon, M. 2009. Anti-Aeromonas hydrophila activity and characterization of novel probiotic strains of Bacillus subtilis isolated from the gastrointestinal tract of giant freshwater prawns. Mj. Int. J. Sci. Technol. 3, 77-87.
  2. Casula, G. and Cutting, S. M. 2002. Bacillus Probiortics: spore germination in the gastrointestinal tranct. Appl. Environ. Microbiol. 68, 2344-2352. https://doi.org/10.1128/AEM.68.5.2344-2352.2002
  3. Cho, K. M., Math, R. K., Hong, S. Y., Asraful Islama, S. M., Mandannaa, D. K., Cho, J. J., Yun, M. G. Kim, J. M. and Yun, H. D. 2009. Iturin produced by Bacillus pumilus HY1 from Korean soybean sauce (kanjang) inhibits growth of aflatoxin producing fungi. Food Cont. 20, 402-406. https://doi.org/10.1016/j.foodcont.2008.07.010
  4. Collado, M., Meriluoto, C. J. and Salminen, S. 2007. In vitro analysis of probiotic strain combinations to inhibit pathogen adhesion to human intestinal mucus. Food Res Int. 40, 629-636. https://doi.org/10.1016/j.foodres.2006.11.007
  5. Conway, P. L., Gorbach, S. L. and Goldin, B. R. 1987. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70, 1-12. https://doi.org/10.3168/jds.S0022-0302(87)79974-3
  6. Cutting, S. M. 2010. Bacillus probiotics. Food Microbiol. 28, 214-220.
  7. DeRoos, N. M. and Katan, M. B. 2000. Effect of probiotic bacteria on diarrhea, lipid metabolism and carcinogenesis. Am. J. Clin. Nutr. Rev. 71, 405-11.
  8. Doyle, R. J. and Rosenberg, M. 1995. Measurement of microbial adhesion to hydrophobic substrates. Methods Enzymol. 253, 532-550.
  9. EFSA. 2009. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the maintenance of the list of QPS microorganisms intentionally added to food or feed (2009 up date). EFSA J. 7, 92.
  10. El-Naggar, M. Y. M. 2004. Comparative study of probiotic cultures to control the growth of Escherichia coli O157: H7 and Salmonella typhimurium. Biotechnol. 3, 173-180 https://doi.org/10.3923/biotech.2004.173.180
  11. FAO/WHO. 2002. Joint FAO/WHO (Food and Agriculture Organization/ World Health Organization) working group report on drafting guidelines for the evaluation of probiotics in food. London, Ontatiio, Canada.
  12. Fernandez, M. F., Boris, S. and Barbes, C. 2003. Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. Lett. Appl. Microbiol. 94, 449-455. https://doi.org/10.1046/j.1365-2672.2003.01850.x
  13. Gilliland, S. E., Staley, T. E. and Bush, L. J. 1984. Importance of bile tolerance of Lactobacillus acidophillus used as a dietary adjunct. J. Dairy Sci. 67, 3045-3051. https://doi.org/10.3168/jds.S0022-0302(84)81670-7
  14. Goosney, D. L., Knoechel, D. G. and Finlay, B. B. 1999. Enteropathogenic E. coli, Salmonella, and Shigella: masters of host cell cytoskeletal exploitation. Emerg. Infect Dis. 5, 216-223. https://doi.org/10.3201/eid0502.990205
  15. Green, D. H., Wakeley, P., Page, R., Barnes, A., Baccigalupi, A. L., Ricca, E. and Cutting, S. M. 1999. Characterization of two Bacillus probiotics. Appl. Environ. Microbiol. 65, 4288-4291.
  16. Homma, N. 1998. Bifidobacteria as a resistance factor in human beings. Bifodobac. Microfl. 7, 35-43.
  17. Jun, K. D., Lee, K. H., Kim, W. S. and Paik, H. D. 2000. Microbiological identification of medical probiotic Bispan strain. Kor. J. Appl. Microbiol. Biotechnol. 28, 124-127.
  18. Kos, B., Suskovic, J., Vukovic, S., Simpraga, M., Frece, J. and Matosic, S. 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 94, 981-987. https://doi.org/10.1046/j.1365-2672.2003.01915.x
  19. Lin, M. Y. and Yen, C. L. 1999. Antioxidative abillity of lactic acid bacteria. J. Agric. Food Chem. 47, 1460-1466. https://doi.org/10.1021/jf981149l
  20. Lim, K. S. and Huh, C. S. 2006. Adhesion of Bifidobacteria to Caco-2 cells and in Relation to Cell Surface Hydrophobicity. Korean J. Food Sci. Ani. Resour. 26, 497-502.
  21. Lynne, A. M. and Foley, S. L. 2008. Food animal-associated Salmonella challenges: pathogenicity and antimicrobial resistance. J. Anim. Sci. 86, E173-E187.
  22. Mengaud, J., Ohayon, H., Gounon, P., Mege, R. M. and Cossart, P. 1996. E-Cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84, 923-932. https://doi.org/10.1016/S0092-8674(00)81070-3
  23. Patel, A. K., Ahir, J. J., Pawar, S. P., Chaudhari, B. L. and Chincholkar, S. B. 2009. Comparative accounts of probiotic characteristics of Bacillus spp. isolated from food wasts. J. Foodres. 42, 505-510.
  24. Pinchuk, I. V., Bressollier, P., Verneuil, B., Fenet, B. I. sorokulova, N., megraud, F. and Urdaci, M. C. 2001. In Vitro Anti-Helicobacter pylori Activity of the Probiotic Strain Bacillus subtilis 3 Is Due to Secretion of Antobiotics. Antimicrob. Agents Chemother. 45, 3156-3161. https://doi.org/10.1128/AAC.45.11.3156-3161.2001
  25. Rijnaarts, H. H. M., Norde, W., Bouwer, E., Lyklema, J. J. and Zehnder, A. J. B. 1993. Bacterial adhesion under static and dynamic conditions. Appl. Environ. Microbiol. 52, 1723-1728.
  26. Saito, N. and Nei, M. 1987. The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 79, 426-434.
  27. Tagg, J. R., Dajani, A. S. and Wannamaker, L. W. 1976. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40, 722-756.
  28. Tagg, J. R., Ray, B. and Jack, R. W. 1995. Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59, 71-200.
  29. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuclic Acid Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  30. Todorv, S. D. and Dicks, L. M. T. 2008. Evaluation of lactic acid bacteria from kefir, molasses and olive brine as possible probiotics based on physiological properties. Ann. Microbiol. 58, 661-670. https://doi.org/10.1007/BF03175572
  31. Todorv, S. D., Botes, M., Guigas, C., Schilinger, U., Wiid, I. M., Wachsman, B. Holzapfel, W. H. and Dicks, L. M. T. 2008. Boza, a natural source of probiotic lactic acid bacteria. J. Appl. Microbiol. 104, 465-477.
  32. Xiaohua, G., Defa, L., Wenqing, L., Xiangshu, P. and Xiaoling, C. 2006. Screening of Bacillus Strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtlis MA139 in pigs. Antonie van Leeuwenhoek. 90, 139-146. https://doi.org/10.1007/s10482-006-9067-9
  33. Xu, H., Jeong, H. S., Lee, H. Y. and Ahn, J. 2009. Assessment of cell surface properties and adhesion potential of selected probiotic strains. J. Appl. Microbiol. 49, 434-442. https://doi.org/10.1111/j.1472-765X.2009.02684.x

피인용 문헌

  1. Characteristics of Paenibacillus sp. BCNU 5016 as a Novel Probiotic vol.24, pp.2, 2014, https://doi.org/10.5352/JLS.2014.24.2.161
  2. Probiotic Potential of Pediococcus pentosaceus BCNU 9070 vol.22, pp.9, 2012, https://doi.org/10.5352/JLS.2012.22.9.1194
  3. Single Dose Oral Toxicity of Bacillus subtilis JNS in ICR Mice vol.44, pp.1, 2015, https://doi.org/10.3746/jkfn.2015.44.1.024