Protective Effects of Younggyechulgam-tang in Cisplatin-induced Ototoxicity

Cisplatin에 의한 이독성(耳毒性)에서 영계출감탕(苓桂朮甘湯)의 보호 효과

  • Jeon, Ho Seong (Department of Third Medicine, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Park, Rae Gil (Department of Microbiology & Vestibulocochlear Research Center, College of Medicine, Wonkwang University) ;
  • So, Hong Seob (Department of Microbiology & Vestibulocochlear Research Center, College of Medicine, Wonkwang University) ;
  • Chong, Myong Soo (Department of Preventive Medicine, College of Oriental Medicine, Wonkwang University) ;
  • Lee, Su Kyung (Department of Oriental Rehabilitation Medicine, College of Oriental Medicine, Wonkwang University)
  • 전호성 (원광대학교 한의학전문대학원) ;
  • 박래길 (원광대학교 의과대학 미생물학교실 및 전정와우기관 연구센터) ;
  • 소홍섭 (원광대학교 의과대학 미생물학교실 및 전정와우기관 연구센터) ;
  • 정명수 (원광대학교 한의과대학 예방의학교실) ;
  • 이수경 (원광대학교 한의과대학 한방재활의학과교실)
  • Received : 2012.08.21
  • Accepted : 2012.10.17
  • Published : 2012.10.25

Abstract

The water extract of Younggyechulgam-tang (YGCGT) has been traditionally used in treatment of tinnitus in Oriental Medicine. However, little is known about the mechanism by which YGCGT rescues ototoxicity. The purpose of the present study is to investigate the protective effect of YGCGT against cisplatin-induced toxicity in HEI-OC1 auditory cells, organotypic cultures of cochlear explants from three-day postnatal rats (P3). Pretreatment with YGCGT ameliorated apoptotic death induced by cisplatin in HEI-OC1 cells and organotypic cultures of Corti's organ. YGCGT pretreatment also significantly suppressed cisplatin-induced increases in intracellular reactive oxygen species (ROS). Treatment with YGCGT resulted in an increased expression of HO-1 and Bcl-2. These results suggest that YGCGT induced HO-1 signaling pathway, which ultimately prevents free radical stresses from cisplatin and further contributes to protect auditory sensory hair cells from free radicals produced by cisplatin.

Keywords

Acknowledgement

Supported by : 원광대학교

References

  1. 張仲景. 仲景全書. 서울, 대성문화사, pp 153-154, 1984.
  2. 신민교. 임상본초학. 서울, 남산당, pp 172-173, 175-177, 250-251, 518-519, 1986.
  3. 신태양사편집국. 원색최신의료대백과사전, 서울, 신태양사, pp 91-92, 1991.
  4. 장인규, 박동원, 류봉하, 이인선. 痰飮의 원인․증상․치법에 관한 문헌적 고찰. 대한한의학회지 7(1):160-169, 1986.
  5. 巢元方. 諸病源候論校譯. 北京, 人民衛生社, p 608, 614, 1980.
  6. Meyerhoff. Diagnosis and management of hearing loss. Philladelphia, WB Saunders Co. pp 95-104, 1984.
  7. 정연훈, 박흥준, 송정환, 유상준, 문성균, 박기현. 이명에 대한 Glutamate 길항제의 치료효과. 대한이비인후과학회지 46: 935-939, 2003.
  8. 張介賓. 景岳全書. 臺北, 大聯國風出版社, pp 477-481, 1970.
  9. 許浚. 東醫寶鑑. 서울, 南山堂, p 90, 128, 233, 1980.
  10. 노석선. 안이비인후과학. 서울, 주민출판사, p 443, 2003.
  11. 牛耕. 李慶雨譯. 黃帝內經素問(2). 서울, 여강출판사, p 314, 2001.
  12. 張介賓. 國譯景岳全書(1). 서울, 一中社, p 921, 1993.
  13. 李梴. 醫學入門. 서울, 法仁文化社, p 420, 2006.
  14. 오천민. 精校醫學正傳. 서울, 醫藥社, p 424, 1973.
  15. 張錫純. 哀中參西錄(下卷). 서울, 輪成社, pp 162-164, 1977.
  16. 槄葉文禮. 腹證奇覽. 서울, 癸丑文化社, pp 107-109, 1975.
  17. Laurell, G., Engstrom, B. Ototoxic effect of cisplatin on guinea pigs in relation to dosage. Hear Res. 38(1-2):27-33, 1989. https://doi.org/10.1016/0378-5955(89)90125-1
  18. Jordan, P., Carmo-Fonesca, M. Molecular mechanism involved in cisplatin cytotoxicity. Cell Mol Life Sci. 57(8-9): 1229-1235, 2000. https://doi.org/10.1007/PL00000762
  19. Lau, A.H. Apoptosis induced by cisplatin nephrotoxic injury. Kidney Laurell G. Ototoxicity of the anticancer drug cisplatin. Clinical and experimental aspects. Scand Audio Suppl. 33: 1-47, 1991.
  20. Berman, S.B., Hastings, T.G. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria, implications for Parkinson's disease. J Neurochem. 73: 1127-1137, 1999.
  21. Halestrap, A.P., Doran, E., Gillespie, J.P., O'Toole, A. Mitochondria and cell death. Biochem Soc Trans. 28: 170-177, 2000. https://doi.org/10.1042/bst0280170
  22. Tournier, C., Hess, P., Yang, D.D., Xu, J., Turner, T.K., Nimnual, A. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science. 288: 870-874, 2000. https://doi.org/10.1126/science.288.5467.870
  23. Maalouf, M., Sullivan, P.G., Davis, L., Kim, D.Y., Rho, J.M. Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience. 145: 256-264, 2007. https://doi.org/10.1016/j.neuroscience.2006.11.065
  24. Morgan, M.J., Kim, Y.S., Liu, Z.G. Lipid rafts and oxidative stress induced cell death. Antioxidants Redox Signal. 9: 1471-1484, 2007. https://doi.org/10.1089/ars.2007.1658
  25. Fang, J., Akaike, T., Maeda, H. Antiapoptotic role of heme oxygenase (HO) and the potential of HO as a target in anticancer treatment. Apoptosis. 9: 27-35, 2004. https://doi.org/10.1023/B:APPT.0000012119.83734.4e
  26. Doi ,K., Akaike, T., Fujii, S., Tanaka, S., Ikebe, N., Beppu, T. Induction of hemoxygenase-1 by nitric oxide and ischaemia in experimental solid tumors and implications for tumour growth. Br J Cancer. 80: 1945-1954, 1999. https://doi.org/10.1038/sj.bjc.6690624
  27. Agarwal, A., Balla, J., Alam, J., Croatt, A.J., Nath, K.A. Induction of heme oxygenase in toxic renal injury: a protective role in cisplatin nephrotoxicity in the rat. Kidney Int. 48: 1298-1307, 1995. https://doi.org/10.1038/ki.1995.414
  28. Yamasaki, F., Tokunaga, O., Sugimori, H. Apoptotic index in ovarian carcinoma: correlation with clinicopathologic factors and prognosis. Gynecol Oncol. 66(3):439-448, 1997. https://doi.org/10.1006/gyno.1997.4783