DOI QR코드

DOI QR Code

Retrieval of Pollen Optical Depth in the Local Atmosphere by Lidar Observations

라이다를 이용한 지역 대기중 꽃가루의 광학적 두께 산출

  • Noh, Young-Min (School of Environmental Science & Engineering, Gwangju Institute of Science & Technology(GIST)) ;
  • Lee, Han-Lim (Department of Atmospheric Sciences, Yonsei University) ;
  • Mueller, Detlef (School of Environmental Science & Engineering, Gwangju Institute of Science & Technology(GIST)) ;
  • Lee, Kwon-Ho (Department of Satellite Geoinformatic Engineering, Kyungil University) ;
  • Choi, Young-Jean (Applied Meteorology Research Lab., National Institute of Meteorological Research (NIMR)) ;
  • Kim, Kyu-Rang (Applied Meteorology Research Lab., National Institute of Meteorological Research (NIMR)) ;
  • Choi, Tae-Jin (Department of Polar Climate Research, Korea Polar Research Institute (KOPRI))
  • 노영민 (광주과학기술원 환경공학부) ;
  • 이한림 (연세대학교 대기과학과) ;
  • ;
  • 이권호 (경일대학교 위성정보공학과) ;
  • 최영진 (국립기상연구소 응용기상연구과) ;
  • 김규랑 (국립기상연구소 응용기상연구과) ;
  • 최태진 (극지연구소 극지기후연구부)
  • Received : 2011.12.01
  • Accepted : 2012.02.17
  • Published : 2012.02.29

Abstract

Air-borne pollen, biogenically created aerosol particle, influences Earth's radiative balance, visibility impairment, and human health. The importance of pollens has resulted in numerous experimental studies aimed at characterizing their dispersion and transport, as well as health effects. There is, however, limited scientific information concerning the optical properties of airborne pollen particles contributing to total ambient aerosols. In this study, for the first time, optical characteristics of pollen such as aerosol backscattering coefficient, aerosol extinction coefficient, and depolarization ratio at 532 nm and their effect to the atmospheric aerosol were studied by lidar remotes sensing technique. Dual-Lidar observations were carried out at the Gwangju Institute of Science & Technology (GIST) located in Gwagnju, Korea ($35.15^{\circ}E$, $126.53^{\circ}N$) for a spring pollen event from 5 to 7 May 2009. The pollen concentration was measured at the rooftop of Gwangju Bohoon hospital where the building is located 1.0 km apart from lidar site by using Burkard trap sampler. During intensive observation period, high pollen concentration was detected as 1360, 2696, and $1952m^{-3}$ in 5, 6, and 7 May, and increased lidar return signal below 1.5km altitude. Pollen optical depth retrieved from depolarization ratio was 0.036, 0.021, and 0.019 in 5, 6, and 7 May, respectively. Pollen particles mainly detected in daytime resulting increased aerosol optical depth and decrease of Angstrom exponent.

대기중의 꽃가루는 생물학적으로 발생하는 자연현상이며, 꽃가루 입자 자체는 태양복사전달과정에 영향을 미치며, 시정을 악화시키는 등 대기환경을 저해하고, 건강문제에 부정적인 영향을 주기도 한다. 꽃가루에 대한 연구는 주로 꽃가루의 이동과 확산, 그리고 건강에 미치는 영향에 대해 이루어져 왔으나 대기 에어러솔로서 광학적 특성 및 기후변화에 미치는 영향에 대한 연구는 아직 미비하다. 본 연구의 목적은 대기 중에서 꽃가루의 시간적 및 수직적 분포를 분석하는 것과 꽃가루의 증가로 인한 대기 에어러솔 광학적 특성변화를 분석하는 것으로서, 광주지역에서 고농도의 꽃가루 현상이 발생한 2009년 5월 5일부터 5월 7일 까지 라이다(Lidar)와 Cimel 선포토미터(sunphotometer)를 이용한 집중 관측을 수행하였다. 꽃가루는 주로 일출 후 대기 중에서 관측되기 시작하여 정오경에 대기경계층 고도 이하 (<약 1.5 km)까지 분포하다 일몰 후 사라지는 일변화를 보였으며, 꽃가루의 일평균 광학적 두께는 5, 6, 그리고 7일에 각각 0.036, 0.021, 그리고 0.019로 전체 대기 에어러솔에서 꽃가루가 차지하는 비율은 1 - 16 %로 정오경에 가장 높은 비율을 보였다. 이러한 연구결과를 살펴볼 때, 봄 철의 높은 꽃가루 농도는 대기 에어러솔의 주요한 요소로 작용할 수 있으며, 위성, 선포토미터 등의 원격 탐사 장비를 이용한 대기 에어러솔 관측 시 영향을 고려해야 할 요소임을 증명하였다.

Keywords

References

  1. 노영민, 이권호, D. Mueller, 최영진, 김규랑, 이한림, 최태진, 2011. 라이다를 이용한 대기중 꽃가루 분포 관측, 한국원격탐사학회지 (submitted). https://doi.org/10.7780/kjrs.2012.28.1.001
  2. Alba, F., D. L. Guardia, C. Diaz, and C. Paul, 2000. The effect of meteorological parameters on diurnal patterns of airborne olive pollen concentration, Grana, 39(4): 200-208. https://doi.org/10.1080/00173130051084340
  3. Bartkova-Scevkova, J., 2003. The influence of temperature, relative humidity and rainfall on the occurrence of pollen allergens (Betula, Poaceae, Ambrosia artemisiifolia) in the atmosphere of Bratislava (Slovakia), Internal Journal of Biometeorology, 48: 1-5. https://doi.org/10.1007/s00484-003-0166-2
  4. Beggs, P. J., 2004. Impacts of climate change on aeroallergens: past and future, Clinical and Experimental Allergy, 34: 1507-1513. https://doi.org/10.1111/j.1365-2222.2004.02061.x
  5. Burge, H.A., 1992. Monitoring for airborne allergens, Annals of Allergy, 69: 9-18.
  6. D'Amato, G. and L. Cecchi, 2008. Effects of climate change on environmental factors in respiratory allergic diseases, Clinical and Experimental Allergy, 38: 1264-1274. https://doi.org/10.1111/j.1365-2222.2008.03033.x
  7. Damialis, A., D. Gioulekas, C. Lazopoulou, C. Balafoutis, and D. Vokou, 2005. Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence, Internal Journal of Biometeorology, 49: 139-145. https://doi.org/10.1007/s00484-004-0229-z
  8. Dubovik, O. and M. D. King, 2000. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, Journal of Geophysical Research, 105: 20673-20696. https://doi.org/10.1029/2000JD900282
  9. Faegri, K. and J. Iversen, 1989. Textbook of Pollen Analysis, 4th rev.ed. J. Wiley & Sons, New York.
  10. Fernald, F. G., 1984. Analysis of atmospheric lidar observations: some comments, Applied Optics, 23: 652. https://doi.org/10.1364/AO.23.000652
  11. Gilissen, L. J. W., 1977. The Influence of Relative Humidity on the Swelling of Pollen Grains in vitro, Planta, 137: 299-301. https://doi.org/10.1007/BF00388166
  12. Gregory, P. H., 1978. Distribution of Airborne pollen and spore and their long distance transport, Pure and Applied Geophysics, 116: 309-315. https://doi.org/10.1007/BF01636888
  13. Hirst, J., 1952. An automatic volumetric spore trap, Annals of Applied Biology, 39: 257-265. https://doi.org/10.1111/j.1744-7348.1952.tb00904.x
  14. Hjelmroos, M., 1992. Long-distance transport of Betula pollen grains and allergic symptoms, Aerobiologia, 8: 231-236. https://doi.org/10.1007/BF02071631
  15. Holben, B.N., T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, 1998. AERONET-a federal instrument network and data archive for aerosol characterization, Remote Sensing of Environment, 66: 1-16. https://doi.org/10.1016/S0034-4257(98)00031-5
  16. Klett, J. D., 1981. Stable analytical inversion solution for processing lidar returns. Applied Optics, 20(2): 211-220. https://doi.org/10.1364/AO.20.000211
  17. Mandrioli, P., M. G. Negrini, G. Cesari, and G. Morgan, 1984. Evidence for long range transport of biological and anthropogenic aerosol particles in the atmosphere, Grana, 23: 43-53. https://doi.org/10.1080/00173138409428876
  18. Niklas, J. K., 1985. The Aerodynamics of wind pollination, The Botanical Review, 51: 328-386. https://doi.org/10.1007/BF02861079
  19. Noh, Y. M., Y. J. Kim, B. C. Choi, and T. Murayama, 2007. Aerosol lidar ratio characteristics measured by a multi-wavelength raman lidar system at anmyeon island, Korea, Atmospheric Research, doi:10.1016/j.atmosres.2007.03.006
  20. Noh, Y. M.,Y. J. Kim, and D. Muller, 2008. Seasonal characteristics of lidar ratio measured with a Raman lidar at Gwangju, Korea in spring and autumn, Atmospheric Environment, 42: 2208-2224. https://doi.org/10.1016/j.atmosenv.2007.11.045
  21. Potter, P. C. and A. Cadman, 1996. Pollen allergy in South Africa, Clinical and Experimental Allergy, 26: 1347-1354. https://doi.org/10.1111/j.1365-2222.1996.tb00535.x
  22. Raynor, G. S. and J. V. Hayes, 1975. Particulate dispersion from sources within a forest, Boundary-Layer meteorology, 9: 257-277. https://doi.org/10.1007/BF00230770
  23. Raynor, G. S., J. V. Hayes, and E. C. Ogden, 1974. Particulate dispersion from source within a forest, Boundary-Layer meteorology, 7: 429-456. https://doi.org/10.1007/BF00568335
  24. Sakai, T., T. Nagai, M. Nakazato, Y. Mano, and T. Murayama, 2003. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and watervapor mixing ratio over Tsukuba, Applied Optics, 42(36): 7103-7116. https://doi.org/10.1364/AO.42.007103
  25. Sassen, K., 2008. Boreal tree pollen sensed by polarization lidar: Depolarizing biogenic chaff, Geophysical Research Letters, 35, L18810, doi: 10.1029/2008GL035085.
  26. Shea, K. M., T. T. Robert, R. W. Weber, and D. B. Peden, 2008. Climate change and allergic disease, American Academy of Allergy, Asthma and Immunology, 443-453.
  27. Smirnov, A., B. N. Holben, T. F. Eck, I. Slutsker, B. Chatenet, and R. T. Pinker, 2002. Diurnal variability of aerosol optical depth observed at AERONET (Aerosol Robotic Network) sites, Geophysical Research Letters, 29(23): 2115, doi:10.1029/2002GL016305.
  28. Sofiev, M., P. Siljamo, H. Ranta, and A. Rantio-Lehtimaki, 2006. Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study, Int. J. Biometeorol, 50: 392-402. https://doi.org/10.1007/s00484-006-0027-x
  29. Stach, A., M. Smith, C. A. Skjoth, J. Brandt, 2007. Examining Ambrosia pollen episodes at Poznan (Poland) using back-trajectory analysis, International Journal of Biometeorology, 51: 275-286. https://doi.org/10.1007/s00484-006-0068-1
  30. Vazquez, L. M., C. Galn, and E. Domnguez-Vilches, 2003. Influence of meteorological parameters on olea pollen concentrations in C_rdoba (South-western Spain), International Journal of Biometeorology, 48: 83-90. https://doi.org/10.1007/s00484-003-0187-x
  31. Willeke, K. and J. M. Macher, 1999. Air Sampling. In: Bioaerosols: Assessment and control (ed. J. M. Macher), pp. 11-1, 11-25. ACGIH, Cincinnati OH.

Cited by

  1. 3-D Perspectives of Atmospheric Aerosol Optical Properties over Northeast Asia Using LIDAR on-board the CALIPSO satellite vol.30, pp.5, 2014, https://doi.org/10.7780/kjrs.2014.30.5.2