DOI QR코드

DOI QR Code

커브형 집적영상에서 부분적으로 가려진 먼 거리 물체 인식 향상을 위한 DPM 방법

Improved Recognition of Far Objects by using DPM method in Curving-Effective Integral Imaging

  • 정한구 (광운대학교 전자공학과, 홀로디지로그 휴먼미디어 연구센터) ;
  • 김은수 (광운대학교 전자공학과, 홀로디지로그 휴먼미디어 연구센터)
  • 투고 : 2011.10.06
  • 심사 : 2012.02.13
  • 발행 : 2012.02.29

초록

본 논문에서는 커브형 집적영상 시스템에서 부분적으로 가려진 먼 거리 3차원 물체의 인식 향상을 위한 새로운 direct pixel-mapping (DPM)방법을 제안한다. 제안 방법은 커브형 집적영상 시스템에서 DPM 방법에 의해 먼 거리에 위치한 3차원 물체로부터 픽업된 요소영상배열 (elemental image array, EIA)은 가시적으로 가까운 거리에서 픽업한 것과 같은 새로운 요소영상배열을 생성한다. 이러한 특성은 재생한 3차원 물체 영상의 해상도를 향상 시킬 수 있고, 이로 인하여 먼 거리에 위치한 3차원 물체에 대한 인식 성능을 향상 시킬 수 있다. 컴퓨터적 실험결과와 기존 방법과의 비교를 통하여 제안방법으로 재생한 물체의 PSNR과 NCC의 값이 평균 1.75dB와 4.56% 향상됨을 확인할 수 있었다.

In this paper, we propose a novel approach to enhance the recognition performance of a far and partially occluded three-dimensional (3-D) target in computational curving-effective integral imaging (CEII) by using the direct pixel-mapping (DPM) method. With this scheme, the elemental image array (EIA) originally picked up from a far and partially occluded 3-D target can be converted into a new EIA just like the one virtually picked up from a target located close to the lenslet array. Due to this characteristic of DPM, resolution and quality of the reconstructed target image can be highly enhanced, which results in a significant improvement of recognition performance of a far 3-D object. Experimental results reveal that image quality of the reconstructed target image and object recognition performance of the proposed system have been improved by 1.75 dB and 4.56% on the average in PSNR (peak-to-peak signal-to-noise ratio) and NCC (normalized correlation coefficient), respectively, compared to the conventional system.

키워드

참고문헌

  1. A. Mahalanobis and F. Goudail, "Methods for automatic target recognition by use of electro-optic sensors: introduction to the feature issue," Appl. Opt., 43, pp. 207-209, 2004 https://doi.org/10.1364/AO.43.000207
  2. J.-H. Ko, D.-C. Hwang, Y.-W. Jung, and E.-S. Kim: "Intelligent mobile robot system for path planning using stereo camera-based geometry information," Proc. SPIE 6006, pp. 60060L, 2005
  3. B. Javidi, ed., "Optical Imaging Sensors and Systems for Homeland Security Applications" Springer, NewYork, 2005
  4. M. Cho, B. Javidi, "Three-dimensional visualization of objects in turbid water using integral imaging," Journal Display Technology 6, pp. 544-547, 2010 https://doi.org/10.1109/JDT.2010.2066546
  5. D. -H. Shin, B. -G. Lee and J. -J. Lee, "Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging," Opt. Express, 16, pp. 16294-16304, 2008 https://doi.org/10.1364/OE.16.016294
  6. Y. Hoon, "Artifact analysis and image enhancement in three-dimensional computational integral imaging using smooth windowing technique," Opt. Lett., 36, pp. 2107-2109, 2011 https://doi.org/10.1364/OL.36.002107
  7. G. Lippmann, "La photographic integrale," C. R. Acad. Sci., 146, pp. 446-451, 1908.
  8. J. -H. Park. J. Kim, Y. Kim, and B. Lee, "Analysis of 3-D Integral Imaging Display Using the Wigner Distribution," Journal of Display Technology, 2, pp. 180-185, 2006 https://doi.org/10.1109/JDT.2006.874508
  9. Y. Kim, J. Kim, K. Hong, H. K. Yang, J. -H. Jung, H. Choi, S. -W. Min, J. -M. Seo, J. -M. Hwang, and B. Lee, "Accommodative response of integral imaging in near distance," Journal of Display Technology, 8(2), pp. 70-78, 2012 https://doi.org/10.1109/JDT.2011.2163701
  10. D. -H. Shin, B. Lee, and E. -S. Kim, "Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens," Appl. Opt., 45, pp. 7375-7381, 2006 https://doi.org/10.1364/AO.45.007375
  11. J. -B. Hyun, D. -C. Hwang, D. -H. Shin, and E. -S. Kim, "Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images," Appl. Opt., 46, pp. 7697-7708, 2007 https://doi.org/10.1364/AO.46.007697
  12. Y. Piao, D. -H. Shin, and E. -S. Kim, "Computational depth conversion of reconstructed three-dimensional object images in curving-effective integral imaging system," Jpn. J. Appl. Phys., 49, pp. 022501, 2010 https://doi.org/10.1143/JJAP.49.022501