• Title/Summary/Keyword: 커브형 집적영상

Search Result 5, Processing Time 0.024 seconds

Resolution Enhancement for Far Objects by Using Direct Pixel Mapping Method in Curving-Effective Integral Imaging (커브형 집적영상에서 다이렉트 픽셀매핑 방법을 이용한 먼 거리 물체의 해상도 향상)

  • Chung, Han-Gu;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2664-2669
    • /
    • 2011
  • We proposed a new method to improve the resolution of far object image in curving effective integral imaging system. Basically, the curving effective integral imaging(CEII) system can improve the resolution of the reconstructed images with an increased sampling rate of elemental images. However, in the case when an object located far from the lenslet array is picked up, the low resolution of the reconstructed images of the far object has been a primary problem because the sampling rate is very low. In order to solve this drawback, by using the direct pixel mapping(DPM) method the EIA picked up from a far object is transformed into a new EIA that virtually looks like the EIA picked up from the object originally located close to the lenslet array. From this new EIA, highly resolution-enhanced images of far object could be reconstructed in the CEII system. To show the feasibility of the proposed method, simulation results are compared with the conventional method.

Generation scheme of elemental images for full-direction-curved integral imaging (전방향 커브형 집적 영상에서의 요소 영상의 제작 방법)

  • Shin Dong-Hak;Cho Byung-Chul;Kim Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.905-909
    • /
    • 2006
  • Recently various types of curved integral imaging system have been reported for improvement of viewing angle. However, the optical implementation has been limited to only unidirectional system. In this paper, we propose a curved integral imaging (CII) system with additional use of a large-aperture ten in conventional II system and explain a generation scheme of elemental images in the proposed system. The proposed system provides full-directional curvature effect and has simple structure due to the use of well-fabricated flat devices. For the full-directional-curved II system, we perform my analysis based on Johns matrix and synthesize novel elemental images. To show the usefulness of synthesized elemental images, preliminary experiments were performed and some experimental results were presented.

Improved recognition of 3D objects using nonlinear correlator based on direct pixel mapping in curving-effective integral imaging (커브형 집적 영상에서 DPM 기반의 비선형 상관기를 이용한 3D 물체 인식 향상)

  • Lee, Joon-Jae;Shin, Donghak;Lee, Byung-Gook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.190-196
    • /
    • 2013
  • Curved integral imaging is a simple method to display 3D images in space using lens array and provides wide viewing angle. In this paper, we propose a nonlinear 3D correlator based on the direct pixel-mapping (DPM) method in order to improve the recognition performance of 3D target object in curving-effective integral imaging. With this scheme, the elemental image array (EIA) originally picked up from a partially occluded 3-D target object can be converted into a resolution enhanced new EIA by using DPM method. Then, through nonlinear cross-correlations between the reconstructed reference and the target plane images, the improved pattern recognition can be performed from the correlation outputs. To show the feasibility of the proposed method, some preliminary experiments are carried out and results are presented by comparing the conventional method.

Improved Recognition of Far Objects by using DPM method in Curving-Effective Integral Imaging (커브형 집적영상에서 부분적으로 가려진 먼 거리 물체 인식 향상을 위한 DPM 방법)

  • Chung, Han-Gu;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2A
    • /
    • pp.128-134
    • /
    • 2012
  • In this paper, we propose a novel approach to enhance the recognition performance of a far and partially occluded three-dimensional (3-D) target in computational curving-effective integral imaging (CEII) by using the direct pixel-mapping (DPM) method. With this scheme, the elemental image array (EIA) originally picked up from a far and partially occluded 3-D target can be converted into a new EIA just like the one virtually picked up from a target located close to the lenslet array. Due to this characteristic of DPM, resolution and quality of the reconstructed target image can be highly enhanced, which results in a significant improvement of recognition performance of a far 3-D object. Experimental results reveal that image quality of the reconstructed target image and object recognition performance of the proposed system have been improved by 1.75 dB and 4.56% on the average in PSNR (peak-to-peak signal-to-noise ratio) and NCC (normalized correlation coefficient), respectively, compared to the conventional system.