DOI QR코드

DOI QR Code

Determination of Polyol Concentration Affecting to the Transparent Bar Soap Using Design of Experiment Method

실험 계획법을 이용한 투명비누에 영향을 미치는 폴리올 농도 결정

  • Cho, Wan-Goo (College of Alternative Medicine, Jeonju University)
  • 조완구 (전주대학교 대체의학대학 기초의과학과)
  • Received : 2012.01.31
  • Accepted : 2012.02.22
  • Published : 2012.03.30

Abstract

In this experiment, the optimum concentration of polyols which were used for making transparent soaps was determined using design of experiment (DOE) method. Dipropylene glycol and 1,3 butylene glycol with short chains enhanced the transparency of soap, however, polyethylene glycol 400, glycerin and diglycerin made the soap opaque. The hardness of soap was increased as increasing the concentration of propylene glycol, diglycerin, dipropylene glycol and polyethylene glycol 400. The hardness, transparency, absorbance of water, and friction solubility could be optimized by controlling the concentration of dipropylene glycol, polyetylene glycol, sugar, and triethanolamine.

본 실험에서는 투명비누를 만드는데 사용되는 폴리올의 최적 농도를 실험계획법을 이용하여 결정하였다. 짧은 사슬을 보유한 디프로필렌글리콜과 1,3 부틸렌글리콜은 비누의 투명도를 증가시켰으나 폴리에틸렌글리콜 400, 글리세린과 디글리세린은 비누를 불투명하게 하였다. 프로필렌글리콜, 디글리세린, 디프로필렌글리콜 및 폴리에틸렌글리콜의 농도를 증가시키면 비누의 경도는 증가하였다. 경도, 투명도, 물의 흡수성 및 마찰 용해도는 디프로필렌글리콜, 폴리에틸렌글리콜, 설탕과 트리에탄올아민의 농도를 조절하여 최적화할 수 있었다.

Keywords

References

  1. Y. S. Kang, K. Y. Kyung. M. J. Rang, D. H. Bae, Y. G. Lee, W. G. Cho, S. G. Choi, and S. G. Han, Cosmetics and Household Product Science, vol. 2, 168, Shin Kwang Press, Seoul (2008).
  2. V. Luzzati, H. Mistacchi, and A. Skoulios, Structure of the Liquid-crystal Phases of the Soap-water System: Middle Soap and Neat Soap, Nature, 180, 600 (1957).
  3. M. L, Lynch, Y. Pan, and R. G. Laughlin, Spectroscopic and Thermal Characterization of 1:2 Sodium Soap/Fatty Acid−soap Crystals, J. Phys. Chem., 357(1). 100 (1996).
  4. M. L. Lynch, F. Wireko, M. Tarek, and M. Klein, Intermolecular Interactions and the Structure of Fatty Acid−soap Crystals, J. Phys. Chem. B, 105(2), 552 (2001).
  5. R. W. Corkery, Metal Organic Framework (MOF) Liquid Crystals. 1D, 2D and 3D Ionic Coordination Polymer Structures in the Thermotropic Mesophases of Metal Soaps, Including Alkaline Earth, Transition Metal and Lanthanide Soaps, Curr. Opin. Colloid Interface Sci., 13, 288 (2008).
  6. G. S. Hattiangdi, M. J. Vold, and R. D. Vold, Differential Thermal Analysis of Metal Soaps, Ind. Eng. Chem., 41, 2320 (1949).
  7. M. Friedman and R. Wolf, Chemistry of Soaps and Detergents: Various Types of Commercial Products and their Ingredients, Clin. Dermatol., 14(1), 7 (1996).
  8. S. H. Shin, E. G. Chang, D. H. Lee, and S. Y. Kim, Determination of Main Factors Affecting the Electrodialysis of Succinate by using Design of Experiment Method, J. Kor. Ind. Eng. Chem., 19(2), 179 (2008).
  9. V. H. Tran, T. P. Nguyen, and P. Molinie, Polaron Mechanism in the Thermal Stabilization of Polyvinyl Chloride, Part I: Metal Soaps and Secondary Stabilizers, Polym. Degrad. Stab., 44(2), 151 (1994).
  10. J. Demetrulias, N. Corbin, and H. North-Root, The Hairless Mouse as a Model for Quantitating Skin Deposition of 3,4,4-trichlorocarbanilide in Bar Soap, Toxicol. Lett., 22(2), 241 (1984).
  11. X. Wang and M. Rackaitis, Gelling Nature of Aluminum Soaps in Oils, J. Colloid Interface Sci., 331, 335 (2009).
  12. B. Lin, A. V. McCormick, H. T. Davis, and R. Strey, Solubility of Sodium Soaps in Aqueous Salt Solutions, J. Colloid Interface Sci., 291, 543 (2005).
  13. R.C. Mehrotra and A.K. Rai, Studies in Heavy Metal Soaps—II Molecular Weights of Aluminium Soaps, Polyhedron, 24(8), 961 (1962).
  14. J. C. Lin, M. H. Nien, and F. M. Yu, Morphological Structure, Processing and Properties of Propylene Polymer Matrix nanocomposites, Composite Structures, 71(1), 78 (2005).
  15. V. Nardello, N. Chailloux, G. Joly, and J. Aubry, Preparation, Amphiphilic Properties and Lyotropic Phase Behaviour of New Surfactants Based on Sodium Monoalkyl ${\alpha}$,${\alpha}$-dicarboxylates, Colloids Surf. A Physicochem. Eng. Asp., 288(1-3), 86 (2006).