Browse > Article
http://dx.doi.org/10.12925/jkocs.2012.29.1.7

Determination of Polyol Concentration Affecting to the Transparent Bar Soap Using Design of Experiment Method  

Cho, Wan-Goo (College of Alternative Medicine, Jeonju University)
Publication Information
Journal of the Korean Applied Science and Technology / v.29, no.1, 2012 , pp. 54-62 More about this Journal
Abstract
In this experiment, the optimum concentration of polyols which were used for making transparent soaps was determined using design of experiment (DOE) method. Dipropylene glycol and 1,3 butylene glycol with short chains enhanced the transparency of soap, however, polyethylene glycol 400, glycerin and diglycerin made the soap opaque. The hardness of soap was increased as increasing the concentration of propylene glycol, diglycerin, dipropylene glycol and polyethylene glycol 400. The hardness, transparency, absorbance of water, and friction solubility could be optimized by controlling the concentration of dipropylene glycol, polyetylene glycol, sugar, and triethanolamine.
Keywords
soap; polyol; transparency; absorption of water; hardness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. S. Kang, K. Y. Kyung. M. J. Rang, D. H. Bae, Y. G. Lee, W. G. Cho, S. G. Choi, and S. G. Han, Cosmetics and Household Product Science, vol. 2, 168, Shin Kwang Press, Seoul (2008).
2 V. Luzzati, H. Mistacchi, and A. Skoulios, Structure of the Liquid-crystal Phases of the Soap-water System: Middle Soap and Neat Soap, Nature, 180, 600 (1957).
3 M. L, Lynch, Y. Pan, and R. G. Laughlin, Spectroscopic and Thermal Characterization of 1:2 Sodium Soap/Fatty Acid−soap Crystals, J. Phys. Chem., 357(1). 100 (1996).
4 M. L. Lynch, F. Wireko, M. Tarek, and M. Klein, Intermolecular Interactions and the Structure of Fatty Acid−soap Crystals, J. Phys. Chem. B, 105(2), 552 (2001).
5 R. W. Corkery, Metal Organic Framework (MOF) Liquid Crystals. 1D, 2D and 3D Ionic Coordination Polymer Structures in the Thermotropic Mesophases of Metal Soaps, Including Alkaline Earth, Transition Metal and Lanthanide Soaps, Curr. Opin. Colloid Interface Sci., 13, 288 (2008).
6 G. S. Hattiangdi, M. J. Vold, and R. D. Vold, Differential Thermal Analysis of Metal Soaps, Ind. Eng. Chem., 41, 2320 (1949).
7 M. Friedman and R. Wolf, Chemistry of Soaps and Detergents: Various Types of Commercial Products and their Ingredients, Clin. Dermatol., 14(1), 7 (1996).
8 S. H. Shin, E. G. Chang, D. H. Lee, and S. Y. Kim, Determination of Main Factors Affecting the Electrodialysis of Succinate by using Design of Experiment Method, J. Kor. Ind. Eng. Chem., 19(2), 179 (2008).
9 V. H. Tran, T. P. Nguyen, and P. Molinie, Polaron Mechanism in the Thermal Stabilization of Polyvinyl Chloride, Part I: Metal Soaps and Secondary Stabilizers, Polym. Degrad. Stab., 44(2), 151 (1994).
10 J. Demetrulias, N. Corbin, and H. North-Root, The Hairless Mouse as a Model for Quantitating Skin Deposition of 3,4,4-trichlorocarbanilide in Bar Soap, Toxicol. Lett., 22(2), 241 (1984).
11 X. Wang and M. Rackaitis, Gelling Nature of Aluminum Soaps in Oils, J. Colloid Interface Sci., 331, 335 (2009).
12 B. Lin, A. V. McCormick, H. T. Davis, and R. Strey, Solubility of Sodium Soaps in Aqueous Salt Solutions, J. Colloid Interface Sci., 291, 543 (2005).
13 R.C. Mehrotra and A.K. Rai, Studies in Heavy Metal Soaps—II Molecular Weights of Aluminium Soaps, Polyhedron, 24(8), 961 (1962).
14 J. C. Lin, M. H. Nien, and F. M. Yu, Morphological Structure, Processing and Properties of Propylene Polymer Matrix nanocomposites, Composite Structures, 71(1), 78 (2005).
15 V. Nardello, N. Chailloux, G. Joly, and J. Aubry, Preparation, Amphiphilic Properties and Lyotropic Phase Behaviour of New Surfactants Based on Sodium Monoalkyl ${\alpha}$,${\alpha}$-dicarboxylates, Colloids Surf. A Physicochem. Eng. Asp., 288(1-3), 86 (2006).